950 resultados para nitric oxide donor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking. We therefore measured systolic pulmonary-artery pressure (Doppler chocardiography) and exhaled nitric oxide (NO) in 34 healthy, middle-aged Bolivian high altitude natives and in 34 age- and sex-matched, well-acclimatized Caucasian low altitude natives living at high altitude (3600 m). The mean+/-SD systolic right ventricular to right atrial pressure gradient (24.3+/-5.9 vs. 24.7+/-4.9 mmHg) and exhaled NO (19.2+/-7.2 vs. 22.5+/-9.5 ppb) were similar in Bolivians and Caucasians. There was no relationship between pulmonary-artery pressure and respiratory NO in the two groups. These findings provide no evidence that Bolivian high altitude natives are better protected from hypoxic pulmonary hypertension than Caucasian low altitude natives and suggest that attenuation of pulmonary hypertension by increased respiratory NO synthesis may not represent a universal adaptation pattern in highaltitude populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcirculation (2010) 17, 69-78. doi: 10.1111/j.1549-8719.2010.00002.x Abstract Background: This study was designed to explore the effect of transient inducible nitric oxide synthase (iNOS) overexpression via cationic liposome-mediated gene transfer on cardiac function, fibrosis, and microvascular perfusion in a porcine model of chronic ischemia. Methods and Results: Chronic myocardial ischemia was induced using a minimally invasive model in 23 landrace pigs. Upon demonstration of heart failure, 10 animals were treated with liposome-mediated iNOS-gene-transfer by local intramyocardial injection and 13 animals received a sham procedure to serve as control. The efficacy of this iNOS-gene-transfer was demonstrated for up to 7 days by reverse transcriptase-polymerase chain reaction in preliminary studies. Four weeks after iNOS transfer, magnetic resonance imaging showed no effect of iNOS overexpression on cardiac contractility at rest and during dobutamine stress (resting ejection fraction: control 27%, iNOS 26%; P = ns). Late enhancement, infarct size, and the amount of fibrosis were similar between groups. Although perfusion and perfusion reserve in response to adenosine and dobutamine were not significantly modified by iNOS-transfer, both vessel number and diameter were significantly increased in the ischemic area in the iNOS-treated group versus control (point score: control 15.3, iNOS 34.7; P < 0.05). Conclusions: Our findings demonstrate that transient iNOS overexpression does not aggravate cardiac dysfunction or postischemic fibrosis, while potentially contributing to neovascularization in the chronically ischemic heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive studies suggest that healthy children living at high altitude display pulmonary hypertension, but the data to support this assumption are sparse. Nitric oxide (NO) synthesized by the respiratory epithelium regulates pulmonary artery pressure, and its synthesis was reported to be increased in Aymara high-altitude dwellers. We hypothesized that pulmonary artery pressure will be lower in Aymara children than in children of European ancestry at high altitude, and that this will be related to increased respiratory NO. We therefore compared pulmonary artery pressure and exhaled NO (a marker of respiratory epithelial NO synthesis) between large groups of healthy children of Aymara (n = 200; mean +/- SD age, 9.5 +/- 3.6 years) and European ancestry (n = 77) living at high altitude (3,600 to 4,000 m). We also studied a group of European children (n = 29) living at low altitude. The systolic right ventricular to right atrial pressure gradient in the Aymara children was normal, even though significantly higher than the gradient measured in European children at low altitude (22.5 +/- 6.1 mm Hg vs 17.7 +/- 3.1 mm Hg, p < 0.001). In children of European ancestry studied at high altitude, the pressure gradient was 33% higher than in the Aymara children (30.0 +/- 5.3 mm Hg vs 22.5 +/- 6.1 mm Hg, p < 0.0001). In contrast to what was expected, exhaled NO tended to be lower in Aymara children than in European children living at the same altitude (12.4 +/- 8.8 parts per billion [ppb] vs 16.1 +/- 11.1 ppb, p = 0.06) and was not related to pulmonary artery pressure in either group. Aymara children are protected from hypoxic pulmonary hypertension at high altitude. This protection does not appear to be related to increased respiratory NO synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-10 (IL-10) has been reported to inhibit nitric oxide (NO) synthesis and microbicidal activity of interferon-gamma (IFN-gamma)-stimulated macrophages (M phi) by preventing the secretion of tumor necrosis factor-alpha (TNF-alpha) which serves as an autocrine activating signal. We have examined the effects of recombinant IL-10 on the capacity of IFN-gamma together with exogenous TNF-alpha to induce NO synthesis by bone marrow-derived M phi. Under these conditions and in contrast to its reported deactivating potential, IL-10 strongly enhanced NO synthesis measured as nitrite (NO2-) release (half maximal stimulation at approximately 10 U/ml). IL-10 further increased NO2- production by M phi stimulated in the presence of optimal concentrations of prostaglandin E2, a positive modulator of M phi activation by IFN-gamma/TNF-alpha. Increased steady state levels of NO synthase mRNA were observed in 4-h IFN-gamma/TNF-alpha cultures and enhanced NO2(-)-release was evident 24 h but not 48 h after stimulation. These results suggest that the effects of IL-10 on M phi function are more complex than previously recognized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endogenous nitric oxide (NO) mediates pulmonary vasodilatation at birth, but inhaled NO fails to reduce pulmonary vascular resistance (PVR) in newborns with congenital diaphragmatic hernia (CDH). This study was designed to investigate the effects of ventilation, and the nature of its endogenous mediator, in fetal lambs with experimental CDH. Investigations at 138 days of gestation showed that ventilation markedly decreased PVR. Inhibition of NO synthesis reduced ventilation-induced pulmonary vasodilatation in vivo and increased in vitro isometric tension of vascular rings. Ventilation therefore reduces PVR at birth in lambs with CDH, and endogenous NO seems to contribute to this reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: The aim of this study was to determine the presence of the neuronal nitric oxide synthase (nNOS) in near full-term lambs with congenital diaphragmatic hernia (CDH) and its role in the modulation of pulmonary vascular basal tone. METHODS: We surgically created diaphragmatic hernia on the 85th day of gestation. On the 135th, catheters were used to measure pulmonary pressure and blood flow. We tested the effects of 7-nitroindazole (7-NINA), a specific nNOS antagonist and of N-nitro-L-arginine (L-NNA), a nonspecific nitric oxide synthase antagonist. In vitro, we tested the effects of the same drugs on isolated pulmonary vessels. The presence of nNOS protein in the lungs was detected by Western blot analysis. RESULTS: Neither 7-NINA nor L-NNA modified pulmonary vascular basal tone in vivo. After L-NNA injection, acetylcholine (ACh) did not decrease significantly pulmonary vascular resistance (PVR). In vitro, L-NNA increased the cholinergic contractile-response elicited by electric field stimulation (EFS) of vascular rings from lambs with diaphragmatic hernia. CONCLUSION: We conclude that nNOS protein is present in the lungs and pulmonary artery of near full-term lamb fetuses with diaphragmatic hernia, but that it does not contribute to the reduction of pulmonary vascular tone at birth

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapport de synthèse : Plusieurs études suggèrent que les populations vivant en haute altitude sont mieux protégées contre l'hypertension pulmonaire hypoxique que celles originaires de la plaine. Cependant, les mécanismes sous jacents ne sont pas bien compris. Chez les Tibétains, la synthèse augmentée par le système respiratoire de monoxyde d'azote (NO) atténue l'hypertension pulmonaire hypoxique. Il a été spéculé que ce mécanisme pourrait représenter un mode généralisé d'adaptation à la haute altitude, mais il n'existe pas de preuve directe qui consume cette hypothèse. Nous avons donc mesuré la pression artérielle pulmonaire (par échocardiographie Doppler) ainsi que la concentration du NO dans l'air exhalé chez 34 Boliviens en bonne santé, nés et ayant toujours vécus en haute altitude (3600 m) et chez 34 Caucasiens apparentés pour l'âge et le sexe, nés en basse altitude mais vivant depuis de nombreuses années à cette même haute altitude (3600 mètres). La pression artérielle pulmonaire (24.3±5.9 vs. 24.7±4.9 mm Hg) et le NO exhalé (19.2±7.2 vs. 22.5±9.5 ppb) étaient similaires chez les Boliviens et les Caucasiens. Il n'y avait aucune corrélation entre la pression artérielle pulmonaire et le NO respiratoire dans les deux groupes. Ces résultats ne fournissent donc aucune évidence que les Boliviens nés en haute altitude sont mieux protégés contre l'hypertension pulmonaire hypoxique que les Caucasiens nés à basse altitude. Cela suggère que l'atténuation de l'hypertension pulmonaire par une synthèse accrue de NO respiratoire ne représente pas un mode universel d'adaptation des populations à la haute altitude. Abstract : There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking. We therefore measured systolic pulmonary-artery pressure (Doppler echocardiography) and exhaled nitric oxide (NO) in 34 healthy, middle-aged Bolivian high altitude natives and in 34 age- and sex-matched, well-acclimatized Caucasian low altitude natives living at high altitude (3600 m). The mean ± SD systolic right ventricular to right arterial pressure gradient (24.3 ± 5.9 vs. 24.7 ± 4.9 mmHg) and exhaled NO (19.2 ± 7.2 vs. 22.5 ± 9.5 ppb) were similar in Bolivians and Caucasians. There was no relationship between ,pulmonary-artery pressure and respiratory NO in the two groups. These findings provide no evidence that Bolivian high altitude natives are better protected from hypoxic pulmonary hypertension than Caucasian low altitude natives and suggest that attenuation of pulmonary hypertension by increased respiratory NO synthesis may not represent a universal adaptation pattern in highaltitude populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cx40-deficient mice (Cx40-/-) are hypertensive due to increased renin secretion. We evaluated the renal expression of neuronal nitric oxide synthase (nNOS) and cyclooxygenases COX-1 and COX-2, three macula densa enzymes. The levels of nNOS were increased in kidneys of Cx40-/- mice, as well as in those of wild-type (WT) mice subjected to the two-kidney one-clip model of hypertension. In contrast, the levels of COX-2 expression were only increased in the hypoperfused kidney of Cx40-/- mice. Treatment with indomethacin lowered blood pressure and renin mRNA in Cx40-/- mice without affecting renin levels, indicating that changes in COX-2 do not cause the altered secretion of renin. Suppression of NOS activity by N(G)-nitro-L-arginine methyl ester (L-NAME) decreased renin levels in Cx40-/- animals, indicating that NO regulates renin expression in the absence of Cx40. Treatment with candesartan normalized blood pressure in Cx40-/- mice, and decreased the levels of both COX-2 and nNOS. After a treatment combining candesartan and L-NAME, the blood pressure of Cx40-/- mice was higher than that of WT mice, showing that NO may counterbalance the vasoconstrictor effects of angiotensin II in Cx40-/- mice. These data document that renal COX-2 and nNOS are differentially regulated due to the elevation of renin-dependent blood pressure in mice lacking Cx40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo. Here, we demonstrate that nitric oxide (NO), delivered by various NO donors, time- and dose-dependently induces MCT4 expression in cultured cortical astrocytes both at the mRNA and protein levels. In contrast, NO does not enhance the expression of MCT1, the other astrocytic monocarboxylate transporter. The transcriptional effect of NO is not mediated by a cGMP-dependent mechanism as shown by the absence of effect of a cGMP analog or of a selective guanylate cyclase inhibitor. NO causes an increase in astrocytic lactate transport capacity which requires the enhancement of MCT4 expression as both are prevented by the use of a specific siRNA against MCT4. In addition, cumulated lactate release by astrocytes over a period of 24 h was also enhanced by NO treatment. Our data suggest that NO represents a putative intercellular signal to control MCT4 expression in astrocytes and in doing so, to facilitate lactate transfer to other surrounding cell types in the central nervous system. (C) 2011 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent pulmonary hypertension of the newborn (PPHN) is a life threatening condition associated with an increased risk of neurodevelopmental impairment. The recommended treatment for this condition is inhaled nitric oxide (iNO) and has been used in our Neonatal Intensive Care Unit since 1998. We prospectively offered neurodevelopmental follow-up to children treated with iNO for PPHN, including extensive neurological evaluation, developmental/cognitive evaluation at 18 months and 3.5-5 years old, and evaluated the rate of severe and moderate handicap and normal neurodevelopmental outcome, compared to a control group and the literature. Population consisted of 29 patients treated only with iNO, born between 01.01.1999 and 31.12.2005 (study group), and 32 healthy term infants born in 1998 in our maternity (control group). During those seven years, 65 infants were admitted in our Unit with PPHN, of whom 40 were treated with iNO alone. 34 children survived (85%) and were offered neurodevelopmental follow-up, 7 children were lost to follow-up due to various reasons. 22 children were examined at the age of 18 months (76%) with a rate of moderate handicap of 22% (2 with expressive language delay, 2 with difficult behavior, and 1 child with moderate hearing loss), and a rate of major handicap of 4.5% (1 child with cerebral palsy due to perinatal stroke, and moderate hearing loss). At preschool age, 17 (50%) were examined, the rate of moderate handicap was 22% (4 borderline intelligence, 1 hearing loss), and the rate of major handicap was 4.5% (one child with cerebral palsy and hearing loss), compared to 26.9% and 0% in the control group. Mean developmental quotient at 18 months was 100.3 ± 8.7 (control group 118.3), and at preschool age mean cognitive indices were within normal limits for the 2 tests performed at 3.5 or 5 years (108 ± 21, 94.4 ± 17). Most of the children with a less favorable neurodevelopmental outcome suffered from birth asphyxia (ruptured uterus, placental abruption, maternal hypotension, diabetic cardiomyopathy), and notably, the 2 children with sensorineural hearing loss both suffered from severe hypoxic-ischemic enkelopathy. Treatment with iNO was not the direct cause of the neurodevelopmental impairments observed in children treated for PPHN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bioavailability of nitric oxide (NO) within the vascular wall is limited by superoxide anions (O2.-). The relevance of extracellular superoxide dismutase (ecSOD) for the detoxification of vascular O2.- is unknown. We determined the involvement of ecSOD in the control of blood pressure and endothelium-dependent responses in angiotensin II-induced hypertension and renovascular hypertension induced by the two-kidney, one-clip model in wild-type mice and mice lacking the ecSOD gene. Blood pressure was identical in sham-operated ecSOD+/+ and ecSOD-/- mice. After 6 days of angiotensin II-treatment and 2 and 4 weeks after renal artery clipping, blood pressure was significantly higher in ecSOD-/- than ecSOD+/+ mice. Recombinant ecSOD selectively decreased blood pressure in hypertensive ecSOD-/- mice, whereas ecSOD had no effect in normotensive and hypertensive ecSOD+/+ mice. Compared with sham-operated ecSOD+/+ mice, sham-operated ecSOD-/- mice exhibited attenuated acetylcholine-induced relaxations. These responses were further depressed in vessels from clipped animals. Vascular O2.-, as measured by lucigenin chemiluminescence, was higher in ecSOD-/- compared with ecSOD+/+ mice and was increased by clipping. The antioxidant tiron normalized relaxations in vessels from sham-operated and clipped ecSOD-/-, as well as from clipped ecSOD+/+ mice. In contrast, in vivo application of ecSOD selectively enhanced endothelium-dependent relaxation in vessels from ecSOD-/- mice. These data reveal that endogenous ecSOD is a major antagonistic principle to vascular O2.-, controlling blood pressure and vascular function in angiotensin II-dependent models of hypertension. ecSOD is expressed in such an abundance that even in situations of high oxidative stress no relative lack of enzyme activity occurs.