831 resultados para network-based intrusion detection system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although anti−cancer immuno−based combinatorial therapeutic approaches have shown promising results, efficient tumour eradication demands further intensification of anti−tumour immune response. With the emerging field of nanovaccinology, multi−walled carbon nanotubes (MWNTs) have manifested prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in co−delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs) has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of cytosine−phosphate−guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (αCD40), as immunoadjuvants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced against OVA−expressing tumour cells. We initially investigated the effective method to co−deliver OVA and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs markedly augmented the CpG−mediated adjuvanticity, as demonstrated by the significantly increased OVA−specific T cell responses in vitro and in C57BL/6 mice. αCD40 was then included as a second immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo by OVA, CpG and αCD40 was significantly potentiated by their co−incorporation onto the MWNTs. Furthermore, MWNT remarkably improved the ability of co−loaded OVA, CpG and αCD40 in inhibiting the growth of OVA−expressing B16F10 melanoma cells in subcutaneous or lung pseudo−metastatic tumour models. Therefore, this study suggests that the utilization of MWNTs for the co−delivery of tumour−derived antigen, CpG and αCD40 could be a competent approach for efficient tumours eradication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The business system known as Pyramid does today not provide its user with a reasonable system regarding case management for support issues. The current system in place requires the customer to contact its provider via telephone to register new cases. In addition to this, current system doesn’t include any way for the user to view any of their current cases without contacting the provider.A solution to this issue is to migrate the current case management system from a telephone contact to a web based platform, where customers could easier access their current cases, but also directly through the website create new cases. This new system would reduce the time required to manually manage each individual case, for both customer and provider, resulting in an overall reduction in cost for both parties.The result is a system divided into two different sections, the first one is an API created in Pyramid that acts as a web service, and the second one a website which customers can connect to. The website will allow users to overview their current cases, but also the option to create new cases directly through the site. All the information used to the website is obtained through the web service inside Pyramid. Analyzing the final design of the system, the developers where able to conclude both positive and negative aspects of the systems’ final design. If the platform chosen was the optimal choice or not, and also what can be include if the system is further developed, will be discussed.The development process and the method used during development will also be analyzed and discussed, what positive and negative aspects that where encountered. In addition to this the cause and effect of a development team smaller than the suggested size will also be analyzed. Lastly an analysis of actions that could’ve been made in order to prevent certain issues from occurring will.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterprise architecture (EA) is a tool that aligns organization’s business-process with application and information technology (IT) through EAmodels. This EA model allows the organization to cut off unnecessary IT expenses and determines the future and current IT requirements and boosts organizational performance. Enterprise architecture may be employed in every firm where the firm or organization requires configurations between information technology and business functions. This research investigates the role of enterprise architecture in healthcare organizations and suggests the suitable EA framework for knowledge-based medical diagnostic system for EA modeling by comparing the two most widely used EA frameworks. The results of the comparison identified that the proposed EA has a better framework for knowledge-based medical diagnostic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new ‘Danger Theory’ (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of ‘grounding’ the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new emerging paradigm of Uncertain Risk of Suspicion, Threat and Danger, observed across the field of information security, is described. Based on this paradigm a novel approach to anomaly detection is presented. Our approach is based on a simple yet powerful analogy from the innate part of the human immune system, the Toll-Like Receptors. We argue that such receptors incorporated as part of an anomaly detector enhance the detector’s ability to distinguish normal and anomalous behaviour. In addition we propose that Toll-Like Receptors enable the classification of detected anomalies based on the types of attacks that perpetrate the anomalous behaviour. Classification of such type is either missing in existing literature or is not fit for the purpose of reducing the burden of an administrator of an intrusion detection system. For our model to work, we propose the creation of a taxonomy of the digital Acytota, based on which our receptors are created.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of an animal’s eye is determined by the tasks it must perform. While vertebrates rely on their two eyes for all visual functions, insects have evolved a wide range of specialized visual organs to support behaviors such as prey capture, predator evasion, mate pursuit, flight stabilization, and navigation. Compound eyes and ocelli constitute the vision forming and sensing mechanisms of some flying insects. They provide signals useful for flight stabilization and navigation. In contrast to the well-studied compound eye, the ocelli, seen as the second visual system, sense fast luminance changes and allows for fast visual processing. Using a luminance-based sensor that mimics the insect ocelli and a camera-based motion detection system, a frequency-domain characterization of an ocellar sensor and optic flow (due to rotational motion) are analyzed. Inspired by the insect neurons that make use of signals from both vision sensing mechanisms, advantages, disadvantages and complementary properties of ocellar and optic flow estimates are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'osteoartrite (OA) è una patologia infiammatorio/degenerativa ossea per la quale non sono disponibili terapie causali efficaci ma solo approcci palliativi per la riduzione del dolore cronico. E’ quindi giustificato un investimento per individuare nuove strategie di trattamento. In quest’ottica, lo scopo di questa tesi è stato quello di indagare l’efficacia di polyplexi a base di chitosano o di PEI-g-PEG in un modello cellulare 3D in vitro basato su un hydrogel di Gellan Gum Metacrilato (GGMA) con a bordo condrociti in condizioni simulate di OA. Inizialmente sono state studiate la dimensione e il potenziale-Z di un pool di formulazioni di poliplexi. Quindi se ne è valutata la citocompatibilità utilizzando cellule staminali mesenchimali immortalizzate Y201. Infine, una miscela di GGMA, cellule e polyplexi è stata utilizzata per la stampa 3D di campioni che sono stati coltivati fino a 14 giorni. La condizione OA è stata simulata trattando le cellule con una miscela di citochine implicate nello sviluppo della malattia. Tutte le formulazioni a base di chitosano e due basate su PEI-g-PEG si sono dimostrate citocompatibili e sono hanno veicolato i miRNA nelle cellule (come mostrato dai risultati di analisi in fluorescenza). I risultati delle colorazioni H&E e AlcianBlue hanno confermato che il terreno condizionato ha ben ricreato le condizioni di OA. I polyplexi a base di chitosano e PEI-g-PEG hanno controbilanciato gli effetti delle citochine. Risultati incoraggianti, anche se da approfondire ulteriormente, provengono anche dall’analisi di espressione (RT-PCR) di cinque geni specifici della cartilagine. Concludendo, questo modello ha ben riprodotto le condizioni di OA in vitro; il chitosano ha mostrato di essere un adeguato veicolo per un trattamento a base di miRNA; il PEI-g-PEG si propone come un'alternativa più economica e ragionevolmente affidabile, sebbene il rischio di citotossicità alle concentrazioni più elevate richieda una più esteva validazione sperimentale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research trends in computer-aided drug design have shown an increasing interest towards the implementation of advanced approaches able to deal with large amount of data. This demand arose from the awareness of the complexity of biological systems and from the availability of data provided by high-throughput technologies. As a consequence, drug research has embraced this paradigm shift exploiting approaches such as that based on networks. Indeed, the process of drug discovery can benefit from the implementation of network-based methods at different steps from target identification to drug repurposing. From this broad range of opportunities, this thesis is focused on three main topics: (i) chemical space networks (CSNs), which are designed to represent and characterize bioactive compound data sets; (ii) drug-target interactions (DTIs) prediction through a network-based algorithm that predicts missing links; (iii) COVID-19 drug research which was explored implementing COVIDrugNet, a network-based tool for COVID-19 related drugs. The main highlight emerged from this thesis is that network-based approaches can be considered useful methodologies to tackle different issues in drug research. In detail, CSNs are valuable coordinate-free, graphically accessible representations of structure-activity relationships of bioactive compounds data sets especially for medium-large libraries of molecules. DTIs prediction through the random walk with restart algorithm on heterogeneous networks can be a helpful method for target identification. COVIDrugNet is an example of the usefulness of network-based approaches for studying drugs related to a specific condition, i.e., COVID-19, and the same ‘systems-based’ approaches can be used for other diseases. To conclude, network-based tools are proving to be suitable in many applications in drug research and provide the opportunity to model and analyze diverse drug-related data sets, even large ones, also integrating different multi-domain information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.