971 resultados para nerve degeneration
Resumo:
Purpose: To determine whether the need for retreatment after an initial phase of 3 monthly intravitreal injections of ranibizumab shows an intra-individual regular rhythm and to what degree it varies between different patients. Methods: Prospective study with 42 patients with exudative AMD, treatment naïve. Loading dose of 3 monthly doses of ranibizumab (0,5 mg), followed by a 12 months pro re nata (PRN) regimen according to early exudative signs on HD-OCT Cirrus, Zeiss. The follow-up visits were intensified (week 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, etc after each injection) in order to detect recurrences early, and injection followed within 3 days in cases of subretinal fluid, cysts, or central thickness increase of>50microns. Intervals were calculated between injections for the 12 month follow-up with PRN treatment. Variability was expressed as standard deviation (SD). Results: Visual acuity (VA) improved from a mean ETDRS score of 61.6 (SD 10.8) at baseline to 68.0 (SD 10.2) at month 3 and to 74.7(SD 9.0) at month 12. The 15 patients who have already completed the study showed maintenance of the VA improvement. Central foveal thickness improved from a mean value of 366 microns (baseline) to 253 microns (month 3), well maintained thereafter. Mean number of injections was 8.8 (SD 3.5,range 0-12) per 12 months of follow-up (after 3 doses), with mean individual treatment-recurrence (TR) intervals ranging from 28->365 days (mean 58). Intraindividual variability of TR intervals (SD) was 7.1 days as a mean value (range 1.7¡V22.6). It ranged within 20% of the mean intra-individual interval for 30 (91%) and within 15% for 21 patients (64%). The first interval was within 1 week of the mean intra-individual interval in 64% and within 2 weeks in 89% of patients. Conclusions: The majority of AMD patients showed a relatively stable rhythm for PRN injections of ranibizumab after initial loading phase, associated with excellent functional/anatomical results. The initial interval last loading dose-first recurrence may have a predictive value for further need of treatment, potentially facilitating follow-up and patient care.
Resumo:
Introduction: To investigate differences in twitch and M-wave potentiation in the quadriceps femoris when electrical stimulation is applied over the quadriceps muscle belly versus the femoral nerve trunk. Methods: M-waves and mechanical twitches were evoked using direct quadriceps muscle and femoral nerve stimulation between 48 successive isometric maximal voluntary contractions (MVC) from 10 young, healthy subjects. Potentiation was investigated by analyzing the changes in M-wave amplitude recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles and in quadriceps peak twitch force. Results: Potentiation of twitch, VM M-wave, and VL M-wave were greater for femoral nerve than for direct quadriceps stimulation (P<0.05). Despite a 50% decrease in MVC force, the amplitude of the M-waves increased significantly during exercise. Conclusions: In addition to enhanced electrogenic Na(+) -K(+) pumping, other factors (such as synchronization in activation of muscle fibers and muscle architectural properties) might significantly influence the magnitude of M-wave enlargement. © 2013 Wiley Periodicals, Inc.
Resumo:
PURPOSE: To investigate the rhythm and predictability of the need for retreatment with intravitreal injections of ranibizumab for neovascular age-related macular degeneration (nAMD). METHODS: This prospective study enrolled 39 patients with treatment-naïve nAMD. After three loading doses of intravitreal ranibizumab, patients underwent an intensified follow-up for 12 months (initially weekly, then with stepwise increases to every 2 weeks and to monthly after each injection). Patients were retreated on an as-needed basis if any fluid or increased central retinal thickness (CRT) (>50μm) was found on spectral domain optical coherence tomography (OCT). Statistical analysis included patients who received at least two retreatments (five injections). RESULTS: A mean of 7.5 injections (range 0-12) were given between months 3 and 15. The mean visual acuity increased by 13.1 and 12.6 ETDRS letters at months 12 and 15 respectively. Two or more injection-retreatment intervals were found in 31 patients. The variability of their intra-individual intervals up to 14 weeks was small (SD 0-2.13 weeks), revealing a high regularity of the retreatment rhythm. The SD was correlated with the mean interval duration (r = 0.89, p < 0.001). The first interval was a good predictor of the following intervals (regression coefficient =0.81). One retreatment criterion was stable in 97 % of patients (cysts or subretinal fluid). CONCLUSION: The results of this study demonstrate a high intra-individual predictability of retreatment need with ranibizumab injections for nAMD. These findings may be helpful for developing individualized treatment plans for maintained suppression of disease activity with a minimum of injections and visits.
Resumo:
PURPOSE: Retinal degeneration has been associated with iron accumulation in age-related macular degeneration (AMD), and in several rodent models that had one or several iron regulating protein impairments. We investigated the iron concentration and the protective role of human transferrin (hTf) in rd10 mice, a model of retinal degeneration. METHODS: The proton-induced X-ray emission (PIXE) method was used to quantify iron in rd10 mice 2, 3, and 4 weeks after birth. We generated mice with the β-phosphodiesterase mutation and hTf expression by crossbreeding rd10 mice with TghTf mice (rd10/hTf mice). The photoreceptor loss and apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling in 3-week-old rd10/hTf mice and compared with 3-week-old rd10 mice. The neuroprotective effect of hTf was analyzed in 5-day-old rd10 mice treated by intraperitoneal administration with hTf for up to 25 days. The retinal hTf concentrations and the thickness of the outer nuclear layer were quantified in all treated mice at 25 days postnatally. RESULTS: PIXE analysis demonstrated an age-dependent iron accumulation in the photoreceptors of rd10 mice. The rd10/hTf mice had the rd10 mutation, expressed high levels of hTf, and showed a significant decrease in photoreceptor death. In addition, rd10 mice intraperitoneally treated with hTf resulted in the retinal presence of hTf and a dose-dependent reduction in photoreceptor degeneration. CONCLUSIONS: Our results suggest that iron accumulation in the retinas of rd10 mutant mice is associated with photoreceptor degeneration. For the first time, the enhanced survival of cones and rods in the retina of this model has been demonstrated through overexpression or systemic administration of hTf. This study highlights the therapeutic potential of Tf to inhibit iron-induced photoreceptor cell death observed in degenerative diseases such as retinitis pigmentosa and age-related macular degeneration.
Resumo:
Ce travail de thèse a été réalisé au sein de l'Unité de Thérapie Génique et Biologie des Cellules Souches de l'Hôpital Jules- Gonin dans le Service d'Ophtalmologie de l'Université de Lausanne. Ce laboratoire recherche des solutions thérapeutiques pour des maladies dégénératives et incurables de la rétine comme les rétinites pigmentaires (RP). Ayant déjà montré certains résultats dans le domaine, la thérapie génique a été notre outil pour ce travail. Cette méthode se base sur le principe de remplacer un gène déficient par sa copie normale, en transportant celle-ci au coeur même du noyau par un vecteur. Il existe à l'heure actuelle différents vecteurs. Un des plus efficaces est un vecteur viral non-réplicatif : le lentivirus, dérivé de HIV-1. Celui-ci a la capacité d'intégrer le génome de la cellule cible, lui conférant ainsi un nouveau matériel génétique. Notre but a été d'établir le tropisme du lentivirus dans une rétine en dégénérescence. Ce lentivirus est connu pour transduire efficacement les cellules de l'épithélium pigmentaire rétinien dans l'oeil adulte sain, ainsi que celles de la neurorétine, mais ce, uniquement durant le développement. On sait aussi que le vecteur lentiviral présente un tropisme différent selon les enveloppes dont il est muni ; par exemple, le lentivirus avec une enveloppe Mokola est connu pour transduire les cellules gliales du système nerveux central. La rétine qui dégénère montre quant à elle des changements de sa structure qui pourraient influencer la diffusion du vecteur et/ou son tropisme. Le postulat de base a été le suivant : chez l'adulte, la transduction des neurones de la rétine via le lentivirus pourrait être facilitée par l'altération de la membrane limitante externe induite par la dégénérescence (meilleure pénétrance du virus). D'un point de vue technique, nous avons utilisé deux types distincts de modèles murins de dégénérescence rétinienne : des souris Balb/C soumises à une dose toxique de lumière et les souris Rhodopsin knockout, animaux génétiquement modifiés. Comme vecteur viral, nous avons employé deux différents pseudotypes de lentivirus (caractérisés par les enveloppes virales) avec différents promoteurs (séquence d'ADN qui initie la transduction et confère la spécificité d'expression d'un gène). En changeant l'enveloppe et le promoteur, nous avons essayé de trouver la meilleure combinaison pour augmenter l'affinité du vecteur vis-à-vis des photorécepteurs d'abord, puis vis-à-vis d'autres cellules de la rétine. Nos résultats ont montré que la membrane limitante externe est effectivement altérée chez les deux modèles de dégénérescence, mais que cette modification ne favorise pas la transduction des photorécepteurs lorsqu'on utilise un vecteur lentiviral contenant une enveloppe VSVG et un promoteur photorécepteur-spécifique ou ubiquitaire. En effet, une forte réaction gliale a été observée. Par contre, en utilisant le lentivirus avec une enveloppe Mokola et un promoteur ubiquitaire, nous avons constaté une très bonne transduction au niveau des cellules de Millier dans la rétine en dégénérescence, phénomène non observé chez les souris sauvages. Ce travail a donc permis de trouver un vecteur viral efficace pour atteindre et transduire les cellules de Miiller, ceci seulement pendant la dégénérescence de la rétine. Ces cellules, une fois transduites, pourraient être utilisées pour sécréter dans la rétine des agents thérapeutiques tels que des facteurs neurotrophiques pour soutenir la survie des photorécepteurs ou des facteurs anti-angiogéniques pour prévenir la néo-vascularisation lors de diabète ou de dégénérescence maculaire liée à l'âge. - In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the iuter limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG arid the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an altération of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptór-specific promoter activity change during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the tfokola envelope allows a wide dispersion of the ctor into the retina (corresponding to the injection bleb) with preferential targeting of Muller cells, a situation Mc\ does ot occur in the wild- type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Resumo:
Peripheral and neuraxial nerve blockades are widely used in the perioperative period. Their values to diminish acute postoperative pain are established but other important outcomes such as chronic postoperative pain, or newly, cancer recurrence, or infections could also be influenced. The long-term effects of perioperative nerve blockade are still controversial. We will review current knowledge of the effects of blocking peripheral electrical activity in different animal models of pain. We will first go over the mechanisms of pain development and evaluate which types of fibers are activated after an injury. In the light of experimental results, we will propose some hypotheses explaining the mitigated results obtained in clinical studies on chronic postoperative pain. Finally, we will discuss three major disadvantages of the current blockade: the absence of blockade of myelinated fibers, the inappropriate duration of blockade, and the existence of activity-independent mechanisms.
Resumo:
PURPOSE: To describe the clinical, spectral-domain optical coherence tomography and electrophysiological features of C1QTNF5-associated late-onset retinal degeneration in a molecularly confirmed pedigree. METHODS: Five members of a family participated, and affected individuals (n = 4) underwent detailed ophthalmologic evaluation including fundus autofluorescence and spectral-domain optical coherence tomography imaging and electroretinography. Electrooculography was performed in three individuals. RESULTS: The visual acuity was initially normal and worsened with time. Anterior segment abnormalities included peripupillary iris atrophy and long anterior insertion of zonules. Peripapillary atrophy, drusenoid deposition, and scalloped sectorial chorioretinal atrophy were observed in all older individuals (n = 3). Fundus autofluorescence demonstrated hypofluorescent areas corresponding to regions of chorioretinal atrophy. The spectral-domain optical coherence tomography demonstrated multiple areas of retinal pigment epithelium-Bruch membrane separation with intervening homogeneous deposition that corresponded to the drusenoid lesions and areas of chorioretinal atrophy. Electrooculography was normal in one individual and showed abnormally low dark trough measures in older individuals (n = 2). Electroretinography was normal in early stages (n = 1), but showed marked abnormalities in the rod system (n = 3), which was predominantly inner retinal (n = 2) in late stages. CONCLUSION: Late-onset retinal degeneration is a progressive degeneration, and anterior segment abnormalities present early. The widespread sub-retinal pigment epithelium deposition seen on spectral-domain optical coherence tomography in older individuals appears to be a characteristic in late stages. Electrooculography demonstrates abnormalities only in late stages of the disease.
Resumo:
PURPOSE: Despite ubiquitous expression of the keratoepithelin (KE) protein encoded by the transforming growth factor beta induced/beta induced gene human clone 3 (TGFBI/BIGH3) gene, corneal dystrophies are restricted to the cornea, and no other tissues are affected. We investigated the role of TGFBI/BIGH3 in Groenouw corneal dystrophies by generating transgenic mice overexpressing TGFBI/BIGH3 containing the R555W mutation. METHODS: Transgenic animals expressing the Groenouw mutation of human TGFBI/BIGH3 were generated using lentiviral vectors. The line expressed TGFBI/BIGH3 containing the R555W mutation under the control of the phosphoglycerate kinase (PGK) promoter. Expression of the transgene was monitored by Southern and western blotting and by RT-PCR. Electroretinogram analysis was performed and four mice were subjected to complete necroscopy. RESULTS: Transgene expression was observed in different organs although without specific expression in the cornea. The overall morphology of the transgenic animals was not severely affected by KE overexpression. However, we observed an age-dependent retinal degeneration both functionally and histologically. Female-specific follicular hyperplasia in the spleen and increased levels of lipofuscin in the adrenal gland were also seen in transgenic animals. CONCLUSIONS: Cellular degeneration in the retina of transgenic animals suggest that perturbation of the transforming growth factor beta (TGFbeta) family regulation may affect photoreceptor survival and may induce possible accelerated aging in several tissues. No corneal phenotype could be observed, probably due to the lack of transgene expression in this tissue.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers - a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future.
Resumo:
Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.
Resumo:
Age related macular degeneration (AMD) is a pathological aging of the macula, brought about by the interaction of genetic and environmental factors. It induces geographic atrophy of the retina and/or choroidal neovascularization. In the latter, abnormal vessels develop from the choriocapillaris, with the involvement of VEGF (vascular endothelial growth factor). The VEGF family includes several factors, including VEGF-A, B, C, D, F and PlGF (placental growth factor). Their biological properties and their affinities to the VEGFR1, VEGFR2 and VEGFR3 receptors found on endothelial cells differ. Exudative AMD involves mainly VEGF-A and VEGF-R2. Anti-VEGF agents used in ophthalmology (ranibizumab, bevacizumab and aflibercept) are designed to primarily target this pathway. In vitro, all have sufficient affinity to their ligands. Their therapeutic efficacy must therefore be judged based on clinical criteria. In clinical practice, the minimum number of injections required for a satisfactory result appears to be comparable with all the three. The few available studies on therapeutic substitutions of anti-VEGF compounds suggest that some patients may benefit from substituting the anti-VEGF in cases of an unsatisfactory response to an initial molecule. Although local side effects, including increased risk of geographic atrophy, and systemic effects, including vascular accidents, have been suggested, these risks remain low, specially compared to the benefits of the treatment. Differences in safety between anti-VEGF are theoretically possible but unproven.
Resumo:
Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.
Resumo:
PURPOSE: Determine the effect of repeated intravitreal injections of ranibizumab (0.5 mg; 0.05 ml) on retrobulbar blood flow velocities (BFVs) using ultrasound imaging quantification in twenty patients with exudative age-related macular degeneration treated for 6 months. METHODS: Visual acuity (ETDRS), central macular thickness (OCT), peak-systolic, end-diastolic and mean-BFVs in central retinal (CRA), temporal posterior ciliary (TPCA) and ophthalmic (OA) arteries were measured before, 2 days, 3 weeks and 6 months after the first injection. Patients were examined monthly and received 1-5 additional injections depending on ophthalmologic examination results. RESULTS: Six months after the first injection, a significant increase in visual acuity 50.9 ± 25.9 versus 44.4 ± 21.7 (p < 0.01) and decrease in mean central macular thickness 267 ± 74 versus 377 ± 115 μm (p < 0.001) were observed compared to baseline. Although mean-BFVs decreased by 16%±3% in CRA and 20%±5% in TPCA (p < 0.001) 2 days after the first injection, no significant change was seen thereafter. Mean-BFVs in OA decreased by 19%±5% at week 3 (p < 0.001). However, the smallest number of injections (two injections) was associated with the longest time interval between the last injection and month 6 (20 weeks) and with the best return to baseline levels for mean-BFVs in CRA, suggesting that ranibizumab had reversible effects on native retinal vascular supply after its discontinuation. Moreover, a significant correlation between the number of injections and percentage of changes in mean-BFVs in CRA was observed at month 6 (R = 0.74, p < 0.001) unlike TPCA or OA. CONCLUSION: Ranibizumab could impair the native choroidal and retinal vascular networks, but its effect seems reversible after its discontinuation.