954 resultados para nematode assemblages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropiduridae (Squamata: Iguania) is a lizard taxon widely distributed in the neotropics. Among its representatives, some species are classified as generalists regarding habitat usage. Others exhibit a very restricted and probably relict distribution, and are strongly associated with predominantly sandy and dry habitats. Within this rather ecologically similar than phylogenetically closely related group we examined specimens of Eurolophosaurus amathites, E. divaricatus, Tropidurus hygomi, T. psammonastes for endoparasites. In all four species examined we recorded parasitic nematodes (Nemathelminthes: Nematoda). At least three nematode species were recovered: Parapharyngodon sp., Physaloptera lutzi and Strongyluris oscari, with Ph. lutzi being the most abundant parasite encountered in all lizard species examined. In spite of the hosts' habitat specialization, these parasites are also found frequently in non-psammophilous tropidurid species as well as in other squamates. Individual species richness per lizard was low, with usually just one species parasitizing at a time. These are the first parasites registered for these tropidurids and constitute a total of six new host records.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that volatile organic compounds (VOCs), produced by the yeast Saccharomyces cerevisiae, were able to inhibit the development of phytopathogenic fungi. In this context, the nematicidal potential of the synthetic mixture of VOCs, constituted of alcohols and esters, was evaluated for the control of the root-knot nematode Meloidogyne javanica, which causes losses to crops of high economic value. The fumigation of substrate containing second-stage juveniles with VOCs exhibited nematicidal effect higher than 30% for the lowest concentration tested (33.3 µL g-1 substrate), whereas at 66.6 and 133.3 µL g-1 substrate, the nematode mortality was 100%. The present results stimulate other studies on VOCs for nematode management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 30% of Buccella peruviana (D'Orbigny), Globocassidulina crassa porrecta (Earland & Heron-Allen), Cibicides mackannai (Galloway & Wissler) and C. refulgens (Montfort) indicate the presence of cold Sub Antarctic Shelf Water in winter, from 33.5 to 38.3º S, deeper than 100 m, in the southern part of the study area. In summer, the abundance of this association decreases to less than 15% around 37.5-38.9º S where two species (Globocassidulina subglobosa (Brady), Uvigerina peregrina (Cushman) take over. G. subglobosa, U. peregrina, and Hanzawaia boueana (D'Orbigny) are found at 27-33º S in both seasons in less than 55 m deep in the northern part, and are linked with warm Subtropical Shelf Water and Tropical Water. Freshwater influence was signalized by high silicate concentration and by the presence of Pseudononion atlanticum (Cushman), Bolivina striatula (Cushman), Buliminella elegantissima (D'Orbigny), Bulimina elongata (D'Orbigny), Elphidium excavatum (Terquem), E. poeyanum (D'Orbigny), Ammobaculites exiguus (Cushman & Brönnimann), Arenoparrella mexicana (Kornfeld), Gaudryina exillis (Cushman & Brönnimann), Textularia earlandi (Parker) and thecamoebians in four sectors of the shelf. The presence of Bulimina marginata (D'Orbigny) between 34.1-32.8º S in the winter and 34.2-32.7º S in the summer indicates that the influence of the Subtropical Shelf Front on the sediment does not change seasonally, otherwise, the presence of Angulogerina angulosa (Williamson) in the winter, only in Mar del Plata (38.9º S), show that Malvinas currents are not influencing the sediment in the summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive surveys have been conducted to unravel spatial patterns of benthic infauna communities. Although it has been recognized that benthic organisms are spatially structured along the horizontal and vertical dimensions of the sediment, little is known on how these two dimensions interact with each other. In this study we investigated the interdependence between the vertical and horizontal dimensions in structuring marine nematodes assemblages. We tested whether the similarity in nematode species composition along the horizontal dimension was dependent on the vertical layer of the sediment. To test this hypothesis, three-cm interval sediment samples (15 cm depth) were taken independently from two bedforms in three estuaries. Results indicated that assemblages living in the top layers are more abundant, species rich and less variable, in terms of species presence/absence and relative abundances, than assemblages living in the deeper layers. Results showed that redox potential explained the greatest amount (12%) of variability in species composition, more than depth or particle size. The fauna inhabiting the more oxygenated layers were more homogeneous across the horizontal scales than those from the reduced layers. In contrast to previous studies, which suggested that reduced layers are characterized by a specific set of tolerant species, the present study showed that species assemblages in the deeper layers are more causal (characterized mainly by vagrant species). The proposed mechanism is that at the superficial oxygenated layers, species have higher chances of being resuspended and displaced over longer distances by passive transport, while at the deeper anoxic layers they are restricted to active dispersal from the above and nearby sediments. Such restriction in the dispersal potential together with the unfavorable environmental conditions leads to randomness in the presence of species resulting in the high variability between assemblages along the horizontal dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Meiofaunal assemblages from intertidal and shallow subtidal seabeds were studied at two sites (one dominated by volcanic sands and the other by organogenic sands) at Tenerife (Canary Islands, NE Atlantic Ocean) throughout an entire year (May 2000?April 2001). Specifically, we aimed (i) to test for differences in diversity, structure, and stability between intertidal and subtidal meiofaunal assemblages, and (ii) to determine if differences in the meiofaunal assemblage structure may be explained by environmental factors (granulometric composition, availability of organic matter, and carbonate content in sediments). A total of 103,763 meiofaunal individuals were collected, including 203 species from 19 taxonomic groups (Acari, Amphipoda, Cnidaria, Copepoda, Echinodermata, Gastrotricha, Isopoda, Insecta, Kinorrhyncha, Misidacea, Nematoda, Nemertini, Oligochaeta, Ostracoda, Polychaeta, Priapulida, Sipuncula, Tanaidacea, and Turbellaria). Nematodes were the most abundant taxonomic group. Species diversity was higher in the subtidal than in the intertidal zone at both sites, as a result of the larger dominance of a few species in the intertidal zone. The meiofaunal assemblage structure was different between tidal levels at both sites, the intertidal presenting greater temporal variability (multivariate dispersion) in the meiofaunal assemblage structure than the subtidal. Sediment grain size, here quantified by the different granulometric fractions, explained the variability in meiofaunal assemblage structure to a greater extent than the percentage of carbonates, a variable linked to sediment origin. This study revealed differences in diversity, assemblage structure, and variability between intertidal and subtidal meiofauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat structure is known to influence the abundance of fishes on temperate reefs. Biotic interactions play a major role in determining the distribution and abundance of species. The significance of these forces in affecting the abundance of fishes may hinge on the presence of organisms that either create or alter habitat. On temperate reefs, for example, macroalgae are considered autogenic ecosystem engineers because they control resource availability to other species through their physical structure and provide much of the structure used by fish. On both coral and temperate reefs, small cryptic reef fishes may comprise up to half of the fish numbers and constitute a diverse community containing many specialized species. Small cryptic fishes (<100 mm total length) may be responsible for the passage of 57% of the energy flow and constitute ca. 35% of the overall reef fish biomass on coral reefs. These benthic fish exploit restricted habitats where food and shelter are obtained in, or in relation to, conditions of substrate complexity and/or restricted living space. A range of mechanisms has been proposed to account for the diversity and the abundance of small fishes: (1) lifehistory strategies that promote short generation times, (2) habitat associations and behaviour that reduce predation and (3) resource partitioning that allows small species to coexist with larger competitors. Despite their abundance and potential importance within reef systems, little is known of the community ecology of cryptic fishes. Specifically on habitat associations many theories suggested a not clear direction on this subject. My research contributes to the development of marine fish ecology by addressing the effects of habitat characteristics upon distribution of cryptobenthic fish assemblages. My focus was on the important shallow, coastal ecosystems that often serve as nursery habitat for many fish and where different type of habitat is likely to both play important roles in organism distribution and survival. My research included three related studies: (1) identification of structuring forces on cryptic fish assemblages, such as physical and biological forcing; (2) macroalgae as potential tools for cryptic fish and identification of different habitat feature that could explain cryptic fish assemblages distribution; (3) canopy formers loss: consequences on cryptic fish and relationship with benthos modifications. I found that: (1) cryptic fish assemblages differ between landward and seaward sides of coastal breakwaters in Adriatic Sea. These differences are explained by 50% of the habitat characteristics on two sides, mainly due to presence of the Codium fragile, sand and oyster assemblages. Microhabitat structure influence cryptic fish assemblages. (2) Different habitat support different cryptic fish assemblages. High heterogeneity on benthic assemblages reflect different fish assemblages. Biogenic components that explain different and diverse cryptic fish assemblages are: anemonia bed, mussel bed, macroalgal stands and Cystoseira barbata, as canopy formers. (3) Canopy forming loss is not relevant in structuring directly cryptic fish assemblages. A removal of canopy forming algae did not affect the structure of cryptic fish assemblages. Canopy formers algae on Conero cliff, does not seem to act as structuring force, probably due to its regressive status. In conclusion, cryptic fish have been shown to have species-specific associations with habitat features relating to the biological and non biological components afforded by fish. Canopy formers algae do not explain cryptic fish assemblages distribution and the results of this study and information from the literature (both from the Mediterranean Sea and elsewhere) show that there are no univocal responses of fish assemblages. Further exanimations on an non regressive status of Cystoseira canopy habitat are needed to define and evaluate the relationship between canopy formers and fish on Mediterranean sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of my work consisted in samplings conduced in nine different localities of the salento peninsula and Apulia (Italy): Costa Merlata (BR), Punta Penne (BR), Santa Cesarea terme (LE), Santa Caterina (LE), Torre Inserraglio (LE), Torre Guaceto (BR), Porto Cesareo (LE), Otranto (LE), Isole Tremiti (FG). I collected data of species percentage covering from the infralittoral rocky zone, using squares of 50x50 cm. We considered 3 sites for location and 10 replicates for each site, which has been taken randomly. Then I took other data about the same places, collected in some years, and I combined them together, to do a spatial analysis. So I started from a data set of 1896 samples but I decided not to consider time as a factor because I have reason to think that in this period of time anthropogenic stressors and their effects (if present), didn’t change considerably. The response variable I’ve analysed is the covering percentage of an amount of 243 species (subsequently merged into 32 functional groups), including seaweeds, invertebrates, sediment and rock. 2 After the sampling, I have been spent a period of two months at the Hopkins Marine Station of Stanford University, in Monterey (California,USA), at Fiorenza Micheli's laboratory. I've been carried out statistical analysis on my data set, using the software PRIMER 6. My explorative analysis starts with a nMDS in PRIMER 6, considering the original data matrix without, for the moment, the effect of stressors. What comes out is a good separation between localities and it confirms the result of ANOSIM analysis conduced on the original data matrix. What is possible to ensure is that there is not a separation led by a geographic pattern, but there should be something else that leads the differences. Is clear the presence of at least three groups: one composed by Porto cesareo, Torre Guaceto and Isole tremiti (the only marine protected areas considered in this work); another one by Otranto, and the last one by the rest of little, impacted localities. Inside the localities that include MPA(Marine Protected Areas), is also possible to observe a sort of grouping between protected and controlled areas. What comes out from SIMPER analysis is that the most of the species involved in leading differences between populations are not rare species, like: Cystoseira spp., Mytilus sp. and ECR. Moreover I assigned discrete values (0,1,2) of each stressor to all the sites I considered, in relation to the intensity with which the anthropogenic factor affect the localities. 3 Then I tried to estabilish if there were some significant interactions between stressors: by using Spearman rank correlation and Spearman tables of significance, and taking into account 17 grades of freedom, the outcome shows some significant stressors interactions. Then I built a nMDS considering the stressors as response variable. The result was positive: localities are well separeted by stressors. Consequently I related the matrix with 'localities and species' with the 'localities and stressors' one. Stressors combination explains with a good significance level the variability inside my populations. I tried with all the possible data transformations (none, square root, fourth root, log (X+1), P/A), but the fourth root seemed to be the best one, with the highest level of significativity, meaning that also rare species can influence the result. The challenge will be to characterize better which kind of stressors (including also natural ones), act on the ecosystem; and give them a quantitative and more accurate values, trying to understand how they interact (in an additive or non-additive way).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatio-temporal variations in diversity and abundance of deep-sea macrofaunal assemblages (excluding meiofaunal taxa, as Nematoda, Copepoda and Ostracoda) from the Blanes Canyon (BC) and adjacent open slope are described. The Catalan Sea basin is characterized by the presence of numerous submarine canyons, which are globally acknowledged as biodiversity hot-spots, due to their disturbance regime and incremented conveying of organic matter. This area is subjected to local deep-sea fisheries activities, and to recurrent cold water cascading events from the shelf. The upper canyon (~900 m), middle slope (~1200 m) and lower slope (~1500 m) habitats were investigated during three different months (October 2008, May 2009 and September 2009). A total of 624 specimens belonging to 16 different taxa were found into 67 analyzed samples, which had been collected from the two study areas. Of these, Polychaeta, Mollusca and Crustacea were always the most abundant groups. As expected, the patterns of species diversity and evenness were different in time and space. Both in BC and open slope, taxa diversity and abundance are higher in the shallowest depth and lowest at -1500 m depth. This is probably due to different trophic regimes at these depths. The abundance of filter-feeders is higher inside BC than in the adjacent open slope, which is also related with an increment of predator polychaetes. Surface deposit-feeders are more abundant in the open slope than in BC, along with a decrement of filter-feeders and their predators. Probably these differences are due to higher quantities of suspended organic matter reaching the canyon. The multivariate analyses conducted on major taxa point out major differences effective taxa richness between depths and stations. In September 2009 the analyzed communities double their abundances, with a corresponding increase in richness of taxa. This could be related to a mobilizing event, like the release of accumulated food-supply in a nepheloid layer associated to the arrival of autumn. The highest abundance in BC is detected in the shallowest depth and in late summer (September), probably due to higher food availability caused by stronger flood events coming from Tordera River. The effects of such events seemed to involve adjacent open slope too. The nMDS conducted on major taxa abundance shows a slight temporal difference between the three campaigns samples, with a clear clustering between samples of Sept 09. All depth and all months were dominated by Polychaeta, which have been identified to family level and submitted to further analysis. Family richness have clearly minimum at the -1200 m depth of BC, highlighting the presence of a general impact affecting the populations in the middle slope. Three different matrices have been created, each with a different taxonomic level (All Taxa “AT”, Phylum Level “PL” and Polychaeta Families “PF”). Multivariate analysis (MDS, SIMPER) conducted on PL matrix showed a clear spatial differences between stations (BC and open slope) and depths. MDSs conducted on other two matrices (AT and PF) showed similar patterns, but different from PL analysis. A 2 nd stage analysis have been conducted to understand differences between different taxonomic levels, and PL level has been chosen as the most representative of variation. The faunal differences observed were explained by depth, station and season. All work has been accomplished in the Centre d’estudis avançats de Blanes (CEAB-CSIC), within the framework of Spanish PROMETEO project "Estudio Integrado de Cañones y Taludes PROfundos del MEdiTErráneo Occidental: un hábitat esencial", Ref. CTM2007-66316-C02- 01/MAR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since large stretches of European coasts are already retreating and projected scenarios are worsening, many artificial structures, such as breakwaters and seawalls, are built as tool against coastal erosion. However artificial structures produce widespread changes that alter the coastal zones and affect the biological communities. My doctoral thesis analyses the consequences of different options for coastal protection, namely hard engineering ‘artificial defences’ (i.e. impact of human-made structures) and ‘no-defence’ (i.e. impact of seawater inundation). I investigated two new aspects of the potential impact of coastal defences. The first was the effect of artificial hard substrates on the fish communities structure. In particular I was interested to test if the differences among breakwaters and natural rocky reef would change depending on the nature of the surrounding habitat of the artificial structure (prevalent sandy rather than rocky). The second was the effect on the native natural sandy habitats of the organic detritus derived from hard-bottom species (green algae and mussels) detached from breakwaters. Furthermore, I investigated the ecological implication of the “no-defend” option, which allow the inundation of coastal habitats. The focus of this study was the potential effect of seawater intrusion on the degradation process of marine, salt-marsh and terrestrial detritus, including changes on the breakdown rates and the associated macrofauna. The PhD research was conducted in three areas along European coasts: North Adriatic sea, Sicilian coast and South-West England where different habitats (coastal, estuarine), biological communities (soft-bottom macro-benthos; rocky-coastal fishes; estuarine macro-invertebrates) and processes (organic enrichment; assemblage structure; leaf-litter breakdown) were analyzed. The research was carried out through manipulative and descriptive field-experiments in which specific hypothesis were tested by univariate and multivariate analyses.