892 resultados para multimedia interfaces
Resumo:
Elderly and disabled people can be hugely benefited through the advancement of modern electronic devices, as those can help them to engage more fully with the world. However, existing design practices often isolate elderly or disabled users by considering them as users with special needs. This article presents a simulator that can reflect problems faced by elderly and disabled users while they use computer, television, and similar electronic devices. The simulator embodies both the internal state of an application and the perceptual, cognitive, and motor processes of its user. It can help interface designers to understand, visualize, and measure the effect of impairment on interaction with an interface. Initially a brief survey of different user modeling techniques is presented, and then the existing models are classified into different categories. In the context of existing modeling approaches the work on user modeling is presented for people with a wide range of abilities. A few applications of the simulator, which shows the predictions are accurate enough to make design choices and point out the implication and limitations of the work, are also discussed. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Older people often find it difficult to learn to use new technology. Although they may want to adopt it, they can find the learning process challenging and frustrating and subsequently lose motivation. This paper looks at how psychological theories of intrinsic motivation could be applied to make the ICT learning process more engaging for older users and describes an experiment set up to test the applicability of these theories to user interface (UI) design. The results of the experiment confirmed that intrinsic motivation theory is a valid lens through which to look at current ICT design and also uncovered significant gender differences in reaction to different kinds of learning tasks. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Short period InAs(4 ML)/GaSb(8 ML) superlattices (SLs) with InSb- and mixed-like (or Ga(1-x)In(x)As(1-)ySb(y)-like) interfaces (IFs) are grown by molecular-beam epitaxy (MBE) on (001) GaSb substrates at optimized growth temperature. Raman scattering reveals that two kinds of IFs can be formed by controlling shutter sequences. X-ray diffraction (XRD) and atomic force microscopy (AFM) demonstrate that SLs with mixed-like IFs are more sensitive to growth temperature than that with InSb-like IFs. The photoluminescence (PL) spectra of SLs with mixed-like IFs show a stronger intensity and narrower line width than with InSb-like IFs. It is concluded that InAs/GaSb SLs with mixed-like IFs have better crystalline and optical properties.
Resumo:
The in-plane optical anisotropy of several GaAs/AlGaAs quantum well samples with different well widths has been measured at room temperature by reflectance-difference spectroscopy (RDS). The RDS line shapes are found to be similar in all the samples examined here, which dominantly consist of two peak-like signals corresponding to 1HH-->1E and 1LH-->1E transition. As the well width is decreased, or the 1 ML InAs layer is inserted at one interface, the intensity of the anisotropy increases quickly. Our detail analysis shows that the anisotropy mainly arises from the anisotropic interface roughness. The results demonstrate that the RDS technique is sensitive to the interface structures.
Resumo:
Detailed X-ray photoelectron spectroscopy (XPS) depth profiling measurements were performed across the back n-layer/transparent conducting oxide (n/TCO) inter-faces for superstrate p-i-n solar cells to examine differences between amorphous silicon (a-Si:H) and microcrystalline silicon (mu c-Si:H) n-layer materials as well as TCO materials ZnO and ITO in the chemical, microstructural and diffusion properties of the back interfaces. No chemical reduction of TCO was found for all variations of n-layer/TCO interfaces. We found that n-a-Si:H interfaces better with ITO, while n-mu c-Si:H, with ZnO. A cross-comparison shows that the n-a-Si:H/ITO interface is superior to the n-mu c-Si:H/ZnO interface, as evidenced by the absence of oxygen segregation and less oxidized Si atoms observed near the interface together with much less diffusion of TCO into the n-layer. The results suggest that the n/TCO interface properties are correlated with the characteristics of both the n-layer and the TCO layer. Combined with the results reported on the device performance using similar back n/TCO contacts, we found the overall device performance may depend on both interface and bulk effects related to the back n/TCO contacts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Optical properties of Al0.9Ga0.1As/Al gamma Ga1-gamma As/GaAs/Al chi Ga1-chi As DBR with inhomogeneous graded interfaces has been investigated by using characteristic matrix method. The refractive index model and the analytic characteristic matrix of graded interfaces are obtained. The reflectance spectrum and the reflective phase shift are calculated for GaAs/Al-0.9 Ga-0.1 As DBR and graded interfaces DBR by using characteristic matrix method. The effect of graded interfaces on the optical properties of DBR is discussed. The result shows an extra graded phase matching layer must he added in front of the graded interfaces DBR to fulfil the conditions of phase matching at central wavelength. The accurate thickness of phase matching layer is calculated by optical thickness approximation method.