820 resultados para multi-dimensional systems
Resumo:
Focusing on the uplink, where mobile users (each with a single transmit antenna) communicate with a base station with multiple antennas, we treat multiple users as antennas to enable spatial multiplexing across users. Introducing distributed closed-loop spatial multiplexing with threshold-based user selection, we propose two uplink channel-assigning strategies with limited feedback. We prove that the proposed system also outperforms the standard greedy scheme with respect to the degree of fairness, measured by the variance of the time averaged throughput. For uplink multi-antenna systems, we show that the proposed scheduling is a better choice than the greedy scheme in terms of the average BER, feedback complexity, and fairness. The numerical results corroborate our findings
Resumo:
Multi-vehicle cooperative formation control problem is an important and typical topic of research on multi-agent system. This paper presents a formation stability conjecture to conceive a new methodology for solving the decentralised multi-vehicle formation control problem. It employs the “extension-decomposition-aggregation” scheme to transform the complex multi-agent control problem into a group of sub-problems which is able to be solved conveniently. Based on this methodology, it is proved that if all the individual augmented subsystems can be stabilised by using any approach, the overall formation system is not only asymptotically but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. Simulation study on 6-DOF aerial vehicles (Aerosonde UAVs) has been performed to verify the achieved formation stability result. The proposed multi-vehicle formation control strategy can be conveniently extended to other cooperative control problems of multi-agent systems.
Resumo:
Many graph datasets are labelled with discrete and numeric attributes. Most frequent substructure discovery algorithms ignore numeric attributes; in this paper we show how they can be used to improve search performance and discrimination. Our thesis is that the most descriptive substructures are those which are normative both in terms of their structure and in terms of their numeric values. We explore the relationship between graph structure and the distribution of attribute values and propose an outlier-detection step, which is used as a constraint during substructure discovery. By pruning anomalous vertices and edges, more weight is given to the most descriptive substructures. Our method is applicable to multi-dimensional numeric attributes; we outline how it can be extended for high-dimensional data. We support our findings with experiments on transaction graphs and single large graphs from the domains of physical building security and digital forensics, measuring the effect on runtime, memory requirements and coverage of discovered patterns, relative to the unconstrained approach.
Resumo:
Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.
Resumo:
Os ecossistemas de água doce – responsáveis por funções ambientais importantes e pelo fornecimento de bens e serviços insubstituíveis – têm vindo a ser severamente afectados por perturbações antropogénicas. A conversão de floresta em terreno agrícola afecta os sistemas aquáticos através de uma série de mecanismos: sedimentação; excesso de nutrientes; contaminação; alterações hidrológicas; e remoção de vegetação ripícola. As comunidades de macroinvertebrados de água doce – devido à sua diversidade, ubiquidade e sensibilidade às perturbações ambientais – revelam-se como particularmente adequadas para estudos de avaliação da integridade ecológica destes sistemas expostos simultaneamente a múltiplos factores de impacto. O uso sistemático de respostas biológicas para avaliação de mudanças ambientais – ou biomonitorização – pode ser levado a cabo através de diversas metodologias, que, de uma forma geral, não consideram aspectos funcionais das comunidades biológicas e têm aplicabilidade geograficamente restrita. A biomonitorização através de atributos biológicos (características que reflectem a adaptação das espécies ao seu meio ambiente) revela-se como uma ferramenta promissora na resolução dos problemas referidos, apresentando vantagens adicionais: relações causa-efeito directas; melhoria na diferenciação de impactos; e integração da variabilidade natural. O presente estudo apresenta uma revisão critica do estado-da-arte actual na área do uso de atributos biológicos em biomonitorização. Até à data de publicação, não estava disponível nenhum outro trabalho com a base conceptual do uso de atributos de macroinvertebrados enquanto descritores de comunidades e para efeitos de biomonitorização e gestão de sistemas de água doce. Descrevem-se as teorias ecológicas de suporte destas metodologias (conceitos de habitat-molde e de filtros paisagísticos) e os estudos que aplicaram estas teorias em cenários reais, tendo-se chamado a atenção para questões técnicas e possíveis soluções. As necessidades futuras nesta área englobam: o desenvolvimento de uma só ferramenta de biomonitorização de aplicação alargada; uma maior compreensão da variabilidade natural nas comunidades biológicas; diminuição dos efeitos de soluções de compromisso biológico e sindromas; realização de estudos autoecológicos adicionais; e detecção de impactos específicos em cenários de impacto complexos. Um dos objectivos deste estudo foi contribuir para a melhoria das técnicas de biomonitorização através de atributos, focalizando em comunidades de macroinvertebrados ribeirinhas em diferentes regiões biogeográficas (as bacias hidrográficas dos rios: Little e Salmon em New Brunswick, Canadá; Anllóns na Galiza, Espanha; Reventazón em Cartago, Costa Rica). Em cada região, foram estudados gradientes de uso agrícola de solo, incluindo desde bacias hidrográficas quase exclusivamente cobertas por floresta até bacias sob a influência maioritária de actividades agrícolas intensivas. Em cada gradiente de uso de solo, a caracterização da comunidade biológica (por amostragem de macroinvertebrados em troços de rápidos) foi acompanhada pela caracterização do habitat circundante (incluindo propriedades da bacia hidrográfica, análise química das águas e outras propriedades à escala local). A comunidade de macroinvertebrados foi caracterizada através de informação taxonómica, métricas estruturais, índices de diversidade, métricas de tolerância, índices bióticos e através da compilação de atributos biológicos e fisiológicos gerais, de história de vida e de resistência a perturbações. Análises estatísticas univariadas e multivariadas foram usadas para evidenciar os gradientes biológicos e físico-químicos, confirmar a sua co-variação, testar a significância da discriminação de níveis de impacto e estabelecer comparações inter-regionais. A estrutura de comunidades revelou os complexos gradientes de impacto, que por sua vez co-variaram significativamente com os gradientes de uso de solo. Os gradientes de impacto relacionaram-se sobretudo com entrada de nutrientes e sedimentação. Os gradientes biológicos definidos pelas medidas estruturais seleccionadas co-variaram com os gradientes de impacto estudados, muito embora apenas algumas variáveis estruturais tenham individualmente discriminado as categorias de uso de solo definidas a priori. Não foi detectada consistência nas respostas das medidas estruturais entre regiões biogeográficas, tendo-se confirmadado que as interpretações puramente taxonómicas de impactos são difíceis de extrapolar entre regiões. Os gradientes biológicos definidos através dos atributos seleccionados também co-variaram com os gradientes de perturbação, tendo sido possível obter uma melhor discriminação de categorias de uso de solo. Nas diferentes regiões, a discriminação de locais mais impactados foi feita com base num conjunto similar de atributos, que inclui tamanho, voltinismo, técnicas reproductivas, microhabitat, preferências de corrente e substrato, hábitos alimentares e formas de resistência. Este conjunto poderá vir a ser usado para avaliar de forma predictiva os efeitos das modificações severas de uso de solo impostas pela actividade agrícola. Quando analisadas simultaneamente através dos atributos, as comunidades das três regiões permitiram uma moderada mas significativa discriminação de níveis de impacto. Estas análises corroboram as evidências de que as mudanças nas comunidades de macroinvertebrados aquáticos em locais sob a influência de agricultura intensiva podem seguir uma trajectória convergente no espaço multidimensional, independentemente de factores geográficos. Foram fornecidas pistas para a identificação de parâmetros específicos que deverão ser tidos em conta no planeamento de novos programas de biomonitorização com comunidades de macroinvertebrados bentónicos, para aplicação numa gestão fluvial verdadeiramente ecológica, nestas e noutras regiões. Foram ainda sugeridas possíveis linhas futuras de investigação.
Resumo:
One of the key issues in the computational representation of open societies relates to the introduction of norms that help to cope with the heterogeneity, the autonomy and the diversity of interests among their members. Research regarding this issue presents two omissions. One is the lack of a canonical model of norms that facilitates their implementation, and that allows us to describe the processes of reasoning about norms. The other refers to considering, in the model of normative multi-agent systems, the perspective of individual agents and what they might need to effectively reason about the society in which they participate. Both are the concerns of this paper, and the main objective is to present a formal normative framework for agent-based systems.
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
This paper presents a new methodology for the creation and management of coalitions in Electricity Markets. This approach is tested using the multi-agent market simulator MASCEM, taking advantage of its ability to provide the means to model and simulate VPP (Virtual Power Producers). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market, and internally, with their members, in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. The new features include the development of particular individual facilitators to manage the communications amongst the members of each coalition independently from the rest of the simulation, and also the mechanisms for the classification of the agents that are candidates to join the coalition. In addition, a global study on the results of the Iberian Electricity Market is performed, to compare and analyze different approaches for defining consistent and adequate strategies to integrate into the agents of MASCEM. This, combined with the application of learning and prediction techniques provide the agents with the ability to learn and adapt themselves, by adjusting their actions to the continued evolving states of the world they are playing in.
Resumo:
Power systems are planed and operated according to the optimization of the available resources. Traditionally these tasks were mostly undertaken in a centralized way which is no longer adequate in a competitive environment. Demand response can play a very relevant role in this context but adequate tools to negotiate this kind of resources are required. This paper presents an approach to deal with these issues, by using a multi-agent simulator able to model demand side players and simulate their strategic behavior. The paper includes an illustrative case study that considers an incident situation. The distribution company is able to reduce load curtailment due to load flexibility contracts previously established with demand side players.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Real-time systems demand guaranteed and predictable run-time behaviour in order to ensure that no task has missed its deadline. Over the years we are witnessing an ever increasing demand for functionality enhancements in the embedded real-time systems. Along with the functionalities, the design itself grows more complex. Posed constraints, such as energy consumption, time, and space bounds, also require attention and proper handling. Additionally, efficient scheduling algorithms, as proven through analyses and simulations, often impose requirements that have significant run-time cost, specially in the context of multi-core systems. In order to further investigate the behaviour of such systems to quantify and compare these overheads involved, we have developed the SPARTS, a simulator of a generic embedded real- time device. The tasks in the simulator are described by externally visible parameters (e.g. minimum inter-arrival, sporadicity, WCET, BCET, etc.), rather than the code of the tasks. While our current implementation is primarily focused on our immediate needs in the area of power-aware scheduling, it is designed to be extensible to accommodate different task properties, scheduling algorithms and/or hardware models for the application in wide variety of simulations. The source code of the SPARTS is available for download at [1].
Resumo:
This paper studies a discrete dynamical system of interacting particles that evolve by interacting among them. The computational model is an abstraction of the natural world, and real systems can range from the huge cosmological scale down to the scale of biological cell, or even molecules. Different conditions for the system evolution are tested. The emerging patterns are analysed by means of fractal dimension and entropy measures. It is observed that the population of particles evolves towards geometrical objects with a fractal nature. Moreover, the time signature of the entropy can be interpreted at the light of complex dynamical systems.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff.