966 resultados para multi-band excitation (MBE)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Narrow-band emission of spectral width down to ∼0.05 nm linewidth is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ∼10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new class of multi-channel Fiber Bragg grating, which provides the characteristics of channelized dispersion but does so with only a single reflection band. Such gratings can provide pure phase control of optical pulses without introducing any deleterious insertion-loss-variation. © 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed the analytic expressions for the phase response and time delay of FBGSL of arbitrary grating structure and found that the results from the modelling are in excellent agreement with that of the experimentally measured real devices. The theoretical and experimental investigation clearly reveals that FBGSLs utilizing uniform and linearly chirped gratings exhibit a near-constant time delay in the passbands. Such multi-channel bandpass filters should be highly attractive to WDM applications as they are operating in transmission regime and offering near-zero dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of unrepeatered transmission of a seven Nyquist-spaced 10 GBd PDM-16QAM superchannel using full signal band coherent detection and multi-channel digital back propagation (MC-DBP) to mitigate nonlinear effects is analysed. For the first time in unrepeatered transmission, the performance of two amplification systems is investigated and directly compared in terms of achievable information rates (AIRs): 1) erbium-doped fibre amplifier (EDFA) and 2) second-order bidirectional Raman pumped amplification. The experiment is performed over different span lengths, demonstrating that, for an AIR of 6.8 bit/s/Hz, the Raman system enables an increase of 93 km (36 %) in span length. Further, at these distances, MC-DBP gives an improvement in AIR of 1 bit/s/Hz (to 7.8 bit/s/Hz) for both amplification schemes. The theoretical AIR gains for Raman and MC-DBP are shown to be preserved when considering low-density parity-check codes. Additionally, MC-DBP algorithms for both amplification schemes are compared in terms of performance and computational complexity. It is shown that to achieve the maximum MC-DBP gain, the Raman system requires approximately four times the computational complexity due to the distributed impact of fibre nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider experimentally and theoretically a refined parameter space near the transition to multi-pulse modelocking. Near the transition, the onset of instability is initiated by a Hopf (periodic) bifurcation. As cavity energy is increased, the band of unstable, oscillatory modes generates a chaotic behavior between single- and multi-pulse operation. Both theory and experiment are in good qualitative agreement and they suggest that the phenomenon is of a universal nature in mode-locked lasers at the onset of multi-pulsing from N to N + 1 pulses per round trip. This is the first theoretical and experimental characterization of the transition behavior, made possible by a highly refined tuning of the gain pump level. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical-structural characteristics of the direct optical band-gap semiconducting series of surfactant template-mediated laminar (CdS)x(CdCl2)y(CnH2n+4N)z nanocomposites are reported. X-ray diffraction measurements of the nanocomposites exhibited interlaminar distances in the range 2.9-3.6 nm with observations of eighth order {0 0 l} diffraction planes indicative of a high degree of laminarity and crystallographic order. Diffuse reflectance measurements have determined that the profile of their emission spectrum is that of a direct band-gap with absorption edges in the range 2.11-2.40 eV, depending on the CdS mole fraction in the nanocomposite. Photoluminescence (PL) excitation and time-resolved PL spectroscopies give an estimate of the maximum relative absorbance of the nanocomposites at ∼420 nm while the minimum was observed at ∼560 nm. The main emission was observed at ∼700 nm with emission from doubly ionized sulphur vacancies observed at ∼615 nm at room temperature. The CdS-containing nanocomposite is thus a surfactant-mediated modular system with variable band-gap energy emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic field inhomogeneity results in image artifacts including signal loss, image blurring and distortions, leading to decreased diagnostic accuracy. Conventional multi-coil (MC) shimming method employs both RF coils and shimming coils, whose mutual interference induces a tradeoff between RF signal-to-noise (SNR) ratio and shimming performance. To address this issue, RF coils were integrated with direct-current (DC) shim coils to shim field inhomogeneity while concurrently emitting and receiving RF signal without being blocked by the shim coils. The currents applied to the new coils, termed iPRES (integrated parallel reception, excitation and shimming), were optimized in the numerical simulation to improve the shimming performance. The objectives of this work is to offer a guideline for designing the optimal iPRES coil arrays to shim the abdomen.

In this thesis work, the main field () inhomogeneity was evaluated by root mean square error (RMSE). To investigate the shimming abilities of iPRES coil arrays, a set of the human abdomen MRI data was collected for the numerical simulations. Thereafter, different simplified iPRES(N) coil arrays were numerically modeled, including a 1-channel iPRES coil and 8-channel iPRES coil arrays. For 8-channel iPRES coil arrays, each RF coil was split into smaller DC loops in the x, y and z direction to provide extra shimming freedom. Additionally, the number of DC loops in a RF coil was increased from 1 to 5 to find the optimal divisions in z direction. Furthermore, switches were numerically implemented into iPRES coils to reduce the number of power supplies while still providing similar shimming performance with equivalent iPRES coil arrays.

The optimizations demonstrate that the shimming ability of an iPRES coil array increases with number of DC loops per RF coil. Furthermore, the z direction divisions tend to be more effective in reducing field inhomogeneity than the x and y divisions. Moreover, the shimming performance of an iPRES coil array gradually reach to a saturation level when the number of DC loops per RF coil is large enough. Finally, when switches were numerically implemented in the iPRES(4) coil array, the number of power supplies can be reduced from 32 to 8 while keeping the shimming performance similar to iPRES(3) and better than iPRES(1). This thesis work offers a guidance for the designs of iPRES coil arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au cours des dernières années, la photonique intégrée sur silicium a progressé rapidement. Les modulateurs issus de cette technologie présentent des caractéristiques potentiellement intéressantes pour les systèmes de communication à courte portée. En effet, il est prévu que ces modulateurs pourront être opérés à des vitesses de transmission élevées, tout en limitant le coût de fabrication et la consommation de puissance. Parallèlement, la modulation d’amplitude multi-niveau (PAM) est prometteuse pour ce type de systèmes. Ainsi, ce travail porte sur le développement de modulateurs de silicium pour la transmission de signaux PAM. Dans le premier chapitre, les concepts théoriques nécessaires à la conception de modulateurs de silicium sont présentés. Les modulateurs Mach-Zehnder et les modulateurs à base de réseau de Bragg sont principalement abordés. De plus, les effets électro-optiques dans le silicium, la modulation PAM, les différents types d’électrodes intégrées et la compensation des distorsions par traitement du signal sont détaillés.Dans le deuxième chapitre, un modulateur Mach-Zehnder aux électrodes segmentées est présenté. La segmentation des électrodes permet la génération de signaux optiques PAM à partir de séquences binaires. Cette approche permet d’éliminer l’utilisation de convertisseur numérique-analogique en intégrant cette fonction dans le domaine optique, ce qui vise à réduire le coût du système de communication. Ce chapitre contient la description détaillée du modulateur, les résultats de caractérisation optique et de la caractérisation électrique, ainsi que les tests systèmes. De plus, les tests systèmes incluent l’utilisation de pré-compensation ou de post-compensation du signal sous la forme d’égalisation de la réponse en fréquence pour les formats de modulation PAM-4 et PAM-8 à différents taux binaires. Une vitesse de transmission de 30 Gb/s est démontrée dans les deux cas et ce malgré une limitation importante de la réponse en fréquence suite à l’ajout d’un assemblage des circuits radiofréquences (largeur de bande 3 dB de 8 GHz). Il s’agit de la première démonstration de modulation PAM-8 à l’aide d’un modulateur Mach-Zehnder aux électrodes segmentées. Finalement, les conclusions tirées de ce travail ont mené à la conception d’un deuxième modulateur Mach-Zehnder aux électrodes segmentées présentement en phase de test, dont les performances montrent un très grand potentiel. Dans le troisième chapitre, un modulateur à réseau de Bragg à deux sauts de phase est présenté. L’utilisation de réseaux de Bragg est une approche encore peu développée pour la modulation. En effet, la réponse spectrale de ces structures peut être contrôlée précisément, une caractéristique intéressante pour la conception de modulateurs. Dans ces travaux, nous proposons l’ajout de deux sauts de phase à un réseau de Bragg uniforme pour obtenir un pic de transmission dans la bande de réflexion de celui-ci. Ainsi, il est possible d’altérer l’amplitude du pic de transmission à l’aide d’une jonction pn. Comme pour le deuxième chapitre, ce chapitre inclut la description détaillée du modulateur, les résultats des caractérisations optique et électrique, ainsi que les tests systèmes. De plus, la caractérisation de jonctions pn à l’aide du modulateur à réseau de Bragg est expliquée. Des vitesses de transmission PAM-4 de 60 Gb/s et OOK de 55 Gb/s sont démontrées après la compensation des distorsions des signaux. À notre connaissance, il s’agit du modulateur à réseau de Bragg le plus rapide à ce jour. De plus, pour la première fois, les performances d’un tel modulateur s’approchent de celles des modulateurs de silicium les plus rapides utilisant des microrésonateurs en anneau ou des interféromètres Mach-Zehnder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.