817 resultados para multi-agent learning


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this tutorial paper we summarise the key features of the multi-threaded Qu-Prolog language for implementing multi-threaded communicating agent applications. Internal threads of an agent communicate using the shared dynamic database used as a generalisation of Linda tuple store. Threads in different agents, perhaps on different hosts, communicate using either a thread-to-thread store and forward communication system, or by a publish and subscribe mechanism in which messages are routed to their destinations based on content test subscriptions. We illustrate the features using an auction house application. This is fully distributed with multiple auctioneers and bidders which participate in simultaneous auctions. The application makes essential use of the three forms of inter-thread communication of Qu-Prolog. The agent bidding behaviour is specified graphically as a finite state automaton and its implementation is essentially the execution of its state transition function. The paper assumes familiarity with Prolog and the basic concepts of multi-agent systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observableenvironment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS(Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We control a population of interacting software agents. The agents have a strategy, and receive a payoff for executing that strategy. Unsuccessful agents become extinct. We investigate the repercussions of maintaining a diversity of agents. There is often no economic rationale for this. If maintaining diversity is to be successful, i.e. without lowering too much the payoff for the non-endangered strategies, it has to go on forever, because the non-endangered strategies still get a good payoff, so that they continue to thrive, and continue to endanger the endangered strategies. This is not sustainable if the number of endangered ones is of the same order as the number of non-endangered ones. We also discuss niches, islands. Finally, we combine learning as adaptation of individual agents with learning via selection in a population. © Springer-Verlag Berlin Heidelberg 2003.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a new technique for optimizing the trading strategy of brokers that autonomously trade in re- tail and wholesale markets. Simultaneous optimization of re- tail and wholesale strategies has been considered by existing studies as intractable. Therefore, each of these strategies is optimized separately and their interdependence is generally ignored, with resulting broker agents not aiming for a glob- ally optimal retail and wholesale strategy. In this paper, we propose a novel formalization, based on a semi-Markov deci- sion process (SMDP), which globally and simultaneously op- timizes retail and wholesale strategies. The SMDP is solved using hierarchical reinforcement learning (HRL) in multi- agent environments. To address the curse of dimensionality, which arises when applying SMDP and HRL to complex de- cision problems, we propose an ecient knowledge transfer approach. This enables the reuse of learned trading skills in order to speed up the learning in new markets, at the same time as making the broker transportable across market envi- ronments. The proposed SMDP-broker has been thoroughly evaluated in two well-established multi-agent simulation en- vironments within the Trading Agent Competition (TAC) community. Analysis of controlled experiments shows that this broker can outperform the top TAC-brokers. More- over, our broker is able to perform well in a wide range of environments by re-using knowledge acquired in previously experienced settings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart grid technologies have given rise to a liberalised and decentralised electricity market, enabling energy providers and retailers to have a better understanding of the demand side and its response to pricing signals. This paper puts forward a reinforcement-learning-powered tool aiding an electricity retailer to define the tariff prices it offers, in a bid to optimise its retail strategy. In a competitive market, an energy retailer aims to simultaneously increase the number of contracted customers and its profit margin. We have abstracted the problem of deciding on a tariff price as faced by a retailer, as a semi-Markov decision problem (SMDP). A hierarchical reinforcement learning approach, MaxQ value function decomposition, is applied to solve the SMDP through interactions with the market. To evaluate our trading strategy, we developed a retailer agent (termed AstonTAC) that uses the proposed SMDP framework to act in an open multi-agent simulation environment, the Power Trading Agent Competition (Power TAC). An evaluation and analysis of the 2013 Power TAC finals show that AstonTAC successfully selects sell prices that attract as many customers as necessary to maximise the profit margin. Moreover, during the competition, AstonTAC was the only retailer agent performing well across all retail market settings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of the paper is to explore the possibility of applying existing formal theories of description and design of distributed and concurrent systems to interaction protocols for real-time multi-agent systems. In particular it is shown how the language PRALU, proposed for description of parallel logical control algorithms and rooted in the Petri net formalism, can be used for the modeling of complex concurrent conversations between agents in a multi-agent system. It is demonstrated with a known example of English auction on how to specify an agent interaction protocol using considered means.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within project Distributed eLearning Center (DeLC) we are developing a system for distance and eLearning, which offers fixed and mobile access to electronic content and services. Mobile access is based on InfoStation architecture, which provides Bluetooth and WiFi connectivity. On InfoStation network we are developing multi-agent middleware that provides context-aware, adaptive and personalized access to the mobile services to the users. For more convenient testing and optimization of the middleware a simulation environment, called CA3 SiEnv, is being created.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Postprint

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Postprint