971 resultados para mosquito pathogen
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.
Resumo:
Based on the genetic analysis of the phytopathogen Xylella fastidiosa genome, five media with defined composition were developed and the growth abilities of this fastidious prokaryote were evaluated in liquid media and on solid plates. All media had a common salt composition and included the same amounts of glucose and vitamins but differed in their amino acid content. XDM1 medium contained amino acids threonine, serine, glycine, alanine, aspartic acid and glutamic acid, for which complete degradation pathways occur in X fastidiosa; XDM2 included serine and methionine, amino acids for which biosynthetic enzymes are absent, plus asparagine and glutamine, which are abundant in the xylem sap; XDM3 had the same composition as XDM2 but with asparagine replaced by aspartic acid due to the presence of complete degradation pathway for aspartic acid; XDM4 was a minimal medium with glutamine as a sole nitrogen source; XDM5 had the same composition as XDM4, plus methionine. The liquid and solidified XDM2 and XDM3 media were the most effective for the growth of X. fastidiosa. This work opens the opportunity for the in silico design of bacterial defined media once their genome is sequenced. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development of epidemiological practices in the last years of the nineteenth and early twentieth century was characterized by both an influence of medical geography and the emergence of microbes and vectors of diseases. Both theories were used to explain outbreaks in Rio Grande do Norte specially in Natal. In this process were organized new institutions linked to public health, unhealthy spaces and prescribed hygiene measures. The redefinitions of the spaces were linked to updated elements of Hippocratic medicine such as aerism and emphasis on medical topography. How the physicians of the town were organized in the face of new meanings and fields of expertise in the demarcation of diseases and regulation of their own practices against the illegal medical practitioners? Likewise, the very occurrence of epidemics mobilized people, urban institutions and apparatuses. But how the Hippocratic legacy that leads to the idea of bad air originated by swamps from the eighteenth and nineteenth century has been linked to new microbial assumptions and disease vectors in the early twentieth century? How an invader from Africa, (the mosquito A. gambiae) mobilized transnational efforts to combat malaria and redefined the epidemiological practices? The aim of this work is to understand how epidemiological practices redefine the way we define spaces, practices and disease from both an approach influenced by a relational history of spaces and a theoretical synergy which includes topics in Science Studies, Post Structuralist Geography and some elements of Feminist Studies. Documentary research were surveyed in the reports of the provincial presidents, government posts to the Provincial Assembly, specialized medical articles and theses, and documents from the Rockefeller Foundation and national and international journals. In this regard shall be given to both material and discursive aspects of space-related practical epidemiological that Natal as much (in general) Rio Grande do Norte between bad air and malaria.
Resumo:
Dengue is currently considered one of the most relevant public health problems worldwide. Studies indicate the surroundings of the houses as the preferred sites for the proliferation of Aedes aegypti. The residential areas are privileged environments for human development and contribute to the formation of the individual s identity and for the establishment of affective, social and cultural bonds. The purpose of this study was to investigate possible links between psychological indicators of pro-environmentalism and conservation status of residential backyards. Data collection was performed in 147 homes and methodological strategy involved the use of interview, the Scale of Ecocentric and Anthropocentric Environmentalism, Scale of Consideration of Future Consequences and a tool for environmental evaluation. It was found that the participants expressed as environmental practices the garbage recycling, besides they had the knowledge of how the transmission of dengue occurs. These residents showed ecofriendly motivated commitment: pro-environmentalist ecocentric and anthropocentric. In evaluating the backyard it was verified that the conservation conditions, in almost half of the homes, appeared as carelessness on the part of residents and those conditions are conducive to the proliferation of Aedes aegypti. The pro-environmentalists and guidance for the future identified by the scales were not associated with the conservation status of the backyards. However, it was found that the trends of reduction and stability of infestation levels are associated with self-reported environmental care. These results can contribute to the discussion and design of new mosquito control actions and practices of education and health information among the population
Resumo:
Fourteen polymorphic microsatellite DNA markers derived from the draft genome sequence of Rhizoctonia solani anastomosis group 3 (AG-3), strain Rhs 1AP, were designed and characterized from the potato-infecting soil fungus R. solani AG-3. All loci were polymorphic in two field populations collected from Solanum tuberosum and S. phureja in the Colombian Andes. The total number of alleles per locus ranged from two to seven, while gene diversity (expected heterozygosity) varied from 0.11 to 0.81. Considering the variable levels of genetic diversity observed, these markers should be useful for population genetic analyses of this important dikaryotic fungal pathogen on a global scale.
Resumo:
Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P <= 0.001) were consistent with a relatively high level of differentiation among populations overall; however, pairwise comparisons gave nonsignificant R(ST) values, consistent with contemporary gene flow among five of the populations. Four of these populations were located along the Yangtze River tributary network. Gene flow followed an isolation-by-distance model consistent with restricted long-distance migration. Historical migration rates were reconstructed and yielded values that explained the current levels of population subdivision. Except for one population which appeared to be strictly clonal, all populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction. One population had a strictly recombining structure (all loci were in Hardy-Weinberg equilibrium) but the remaining populations from China and the one from India exhibited varying degrees of sexual reproduction. Six populations showed significant F(IS) values consistent with inbreeding.
Resumo:
Ten polymorphic microsatellite loci were isolated and characterized from the rice- and maize-infecting Basidiomycete fungus Rhizoctonia solani anastomosis group AG-1 IA. All loci were polymorphic in two populations from Louisiana in USA and Venezuela. The total number of alleles per locus ranged from four to eight. All 10 loci were also useful for genotyping soybean-infecting R. solani AG-1 isolates from Brazil and USA. One locus, TC06, amplified across two other AG groups representing different species, showing species-specific repeat length polymorphism. This marker suite will be used to determine the global population structure of this important pathogenic fungus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A proliferação do Aedes aegypti é propiciada pelo habito de permitir a formação de criadouros em vários tipos de recipientes. Uma das formas de controla-lo é a disseminação do conhecimento sobre o vetor, por conduzir a conscientização e a tomada de medidas contra a sua proliferação. Para avaliar um método de ensino sobre o vetor e a dengue, foram comparando alunos de 5ª e 6ª séries antes e após a intervenção didática. Os alunos com intervenção foram mais aptos em reconhecerem as fases do ciclo e tiveram um discernimento maior sobre a importância dos mosquitos para a saúde. Eles também foram mais aptos em reconhecerem quais medidas de controle são mais eficientes e viáveis, repercutindo em suas residências que apresentaram duas vezes menos criadouros em relação aos que não tiveram intervenção.
Resumo:
The habitat of the mycelial saprobic form of Paracoccidio ides brasiliensis, which produces the infectious propagula, has not been determined and has proven difficult for mycologists to describe. The fungus has been rarely isolated from the environment, the disease has a prolonged latency period and no outbreaks have been reported. These facts have precluded the adoption of preventive measures to avoid infection. The confirmation of natural infections in nine-banded armadillos (Dasypus novemcinctus) with P. brasiliensis, in high frequency and wide geographic distribution, has opened new avenues for the study and understanding of its ecology. Armadillos belong to the order Xenarthra, which has existed in South America ever since the Paleocene Era (65 million years ago), when the South American subcontinent was still a detached land, before the consolidation of what is now known as the American continent. on the other hand, strong molecular evidence suggests that P. brasiliensis and other dimorphic pathogenic fungi - such as Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum - belong to the family Onygenaceae sensu Into (order Onygenales, Ascomycota), which appeared around 150 million years ago.P. brasiliensis ecology and relation to its human host are probably linked to the fungal evolutionary past, especially its long coexistence with and adaptation to animal hosts other than Homo sapiens, of earlier origin. Instead of being a blind alley, the meaning of parasitism for dimorphic pathogenic fungi should be considered as an open two-way avenue, in which the fungus may return to the environment, therefore contributing to preserve its teleomorphic (sexual) and anamorphic (asexual) forms in a defined and protected natural habitat. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Despite vast efforts and expenditures in the past few decades, malaria continues to kill millions of persons every year, and new approaches for disease control are urgently needed. To complete its life cycle in the mosquito, Plasmodium, the causative agent of malaria, has to traverse the epithelia of the midgut and salivary glands. Although strong circumstantial evidence indicates that parasite interactions with the two organs are specific, hardly any information is available about the interacting molecules. By use of a phage display library, we identified a 12-aa peptide-salivary gland and midgut peptide 1 (SM1)-that binds to the distal lobes of the salivary gland and to the luminal side of the midgut epithelium, but not to the midgut surface facing the hemolymph or to ovaries. The coincidence of the tissues with which parasites and the SM1 peptide interact suggested that the parasite and peptide recognize the same surface ligand. In support of this hypothesis, the SM1 peptide strongly inhibited Plasmodium invasion of salivary gland and midgut epithelia. These experiments suggest a new strategy for the genetic manipulation of mosquito vectorial capacity.