938 resultados para monosodium glutamate
Resumo:
Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.
Resumo:
Recent discoveries of different modes of exocytosis and a plethora of molecules involved in neurotransmitter release has resulted in demand for more rapid and efficient methods for monitoring endogenous glutamate release from various tissue sources. In this article, we describe a high throughput microplate version of the enzyme-linked fluorescence detection method for the measurement of released glutamate, which utilises glutamate dehydrogenase, and the reduction of NADP to NADPH. Previous versions of this method rely upon cuvette-based fluorimeters for detection that are limited by large sample volumes and small numbers of samples that can be measured simultaneously. Comparison between the two methods shows that the microplate assay has comparable performance to the cuvette-based assay but has the capacity to analyse many times more samples in a given run. This increased capacity provides improved experimental design opportunities, higher experimental throughput and better comparison between experimental conditions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group l etabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.