922 resultados para modelação numérica
Resumo:
The Numerical Cognition is infl uenced by biological, cognitive, educational and cultural factors. It consists of a primary system, called Number Sense that would be innate and universal, also of secondary systems: the Calculation, implied to perform mathematical operations by means of symbols or words and Number Processing, which is divided into two components, Number Comprehension, related with the understanding of numerical symbols and Number Production, which includes reading, writing and coun-ting numbers. However, studies that show the development of these functions in children of preschool age are scarce. Therefore, aims of this study were to investigate numerical cognition in preschool Brazilian children to demonstrate the construct validity of the ZAREKI-K (A Neuropsychological Battery for the Assessment of Treatment of Numbers and Calculation for preschool children). The participants were 42 children of both genders, who attended public elementary schools; the children were evaluated by this battery and WISC-III. The results indicated signifi cant differences associated with age which children of 6 years had better scores on subtests related to Number Production, Calculation and Number Comprehension, as well moderate and high correlations between some subtests of both instruments, demonstrating the construct validity of the battery. In conclusion, preliminary normative data were obtained for ZAREKI-K. The analyses suggested that it is a promising tool for the assessment of numerical cognition in preschool children.Keywords: Mathematics, number, preschoolers, working memory, Developmental Dyscalculia.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow
Resumo:
The water management in any area is highly important to the success of many business and also of life and the understanding of your relationship with the environment brings better control to its demand. I.e. hydrogeological studies are needed under better understanding of the behavior of an aquifer, so that its management is done so as not to deplete or harm it. The objective of this work is the numerical modeling in transient regime of a portion of the Rio Claro aquifer formation in order to get answers about its hydrogeological parameters, its main flow direction and also its most sensitive parameters. A literature review and conceptual characterization of the aquifer, combined with field campaigns and monitoring of local water level (NA), enabled the subsequent construction of the mathematical model by finite elements method, using the FEFLOW 6.1 ® computational algorithm. The study site includes the campus of UNESP and residential and industrial areas of Rio Claro city. Its area of 9.73 km ² was divided into 318040 triangular elements spread over six layers, totaling a volume of 0.25 km³. The local topography and geological contacts were obtained from previous geological and geophysical studies as well as profiles of campus wells and SIAGAS / CPRM system. The seven monitoring wells on campus were set up as observation points for calibration and checking of the simulation results. Sampling and characterization of Rio Claro sandstones shows up a high hydrological and lithological heterogeneity for the aquifer formation. The simulation results indicate values of hydraulic conductivity between 10-6 and 10-4 m / s, getting the Recharge/Rainfall simulation in transient ratio at 13%. Even with the simplifications imposed on the model, it was able to represent the fluctuations of local NA over a year of monitoring. The result was the exit of 3774770 m³ of water and the consequently NA fall. The model is considered representative for the...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
http://www.gi.ulpgc.es/geovol/
Resumo:
[ES] El proyecto resumido en el presente artículo muestra la necesidad de implantar planes de prevención y actuación frente a incidentes contaminantes en la zona marítima canaria utilizando modelos de predicción y optimización que aseguren el éxito de aplicación de los mismos. Gracias al desarrollo de las nuevas tecnologías y avances científicos, podemos simular en tiempo real cómo evolucionará un vertido de hidrocarburo que se desplace en la zona marítima canaria. De esta manera, se optimizan las decisiones y los recursos, se minimiza el impacto ambiental en las costas canarias y se mitigan los perjuicios a la sociedad y economía canaria
Resumo:
[ES] Se habla de los principios básicos de modelación costera y oceánica y las diferentes posibles aplicaciones usando las herramientas de modelación Mohid modelling system.