988 resultados para mobility assisted growth
Resumo:
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.
Resumo:
The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA x CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait.
Resumo:
Background and objective: Patients with COPD can have impaired diaphragm mechanics. A new method of assessing the mobility of the diaphragm, using ultrasound, has recently been validated. This study evaluated the relationship between pulmonary function and diaphragm mobility, as well as that between respiratory muscle strength and diaphragm mobility, in COPD patients. Methods: COPD patients with pulmonary hyperinflation (n = 54) and healthy subjects (n = 20) were studied. Patients were tested for pulmonary function, maximal respiratory pressures and diaphragm mobility using ultrasound to measure the craniocaudal displacement of the left branch of the portal vein. Results: COPD patients had less diaphragm mobility than did healthy individuals (36.5 +/- 10.9 mm vs 46.3 +/- 9.5 mm, P = 0.001). In COPD patients, diaphragm mobility correlated strongly with pulmonary function parameters that quantify air trapping (RV: r = -0.60, P < 0.001; RV/TLC: r = -0.76, P < 0.001), moderately with airway obstruction (FEV1: r = 0.55, P < 0.001; airway resistance: r = -0.32, P = 0.02) and weakly with pulmonary hyperinflation (TLC: r = -0.28, P = 0.04). No relationship was observed between diaphragm mobility and respiratory muscle strength (maximal inspiratory pressure: r = -0.11, P = 0.43; maximal expiratory pressure: r = 0.03, P = 0.80). Conclusion: The results of this study suggest that the reduction in diaphragm mobility in COPD patients is mainly due to air trapping and is not influenced by respiratory muscle strength or pulmonary hyperinflation.
Resumo:
Xylopia aromatica is a species of the Annonaceae family, native to the Brazilian ""Cerrado"". Seeds of this species usually possess morphophysiological dormancy which makes propagation more difficult. The objective of the present study was to evaluate the efficiency of removing the aril and sarcotesta and applying plant growth regulators to overcome dormancy in X. aromatica seeds. Seeds were separated into two groups: one consisting of seeds with aril and sarcotesta and another without these two seed coat appendices. Seeds with and without these appendices were soaked for 48 hours in distilled water or Promalin (R) (gibberellin 4 [GA(4)] + gibberellin 7 [GA(7)] and cytokinin [6-Benziladenine]) solutions of 250, 500 and 1,000 mg.L(-1), and sown in ""Cerrado"" soil. Later, seeds without the aril and sarcotesta were soaked for 48 hours in distilled water. Promalin (R) or GA(4) + GA(7) solutions at same concentrations and sown in sand or ""Cerrado"" soil. The removal of the aril and sarcotesta had a positive effect on the seed germination. Application of plant growth regulators helped to overcome dormancy in X. aromatica, with the greatest percentage of seedling emergence being observed in seeds treated with Promalin at 250 and 500 mg.L(-1) then sown in sand.
Resumo:
Brazil is the largest sugarcane producer in the world, mainly due to the development of different management strategies. Recently, microbial-plant related studies revealed that bacterial isolates belonging to the genus Burkholderia are mainly associated with this plant and are responsible for a range of physiological activity. In this study, we properly evaluate the physiological activity and genetic diversity of endophytic and rhizospheric Burkholderia spp. isolates from sugarcane roots grown in the field in Brazil. In total, 39 isolates previously identified as Burkholderia spp. were firstly evaluated for the capability to fix nitrogen, produce siderophores, solubilise inorganic phosphates, produce indole-acetic acid and inhibit sugarcane phytopathogens in vitro. These results revealed that all isolates present at least two positive evaluated activities. Furthermore, a phylogenetic study was carried out using 16S rRNA and gyrB genes revealing that most of the isolates were affiliated with the Burkholderia cepacia complex. Hence, a clear separation given by endophytic or rhizospheric niche occupation was not observed. These results presented an overview about Burkholderia spp. isolates from sugarcane roots and supply information about the physiological activity and genetic diversity of this genus, given direction for further studies related to achieve more sustainable cultivation of sugarcane.
Resumo:
A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present experiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.
Resumo:
Improper dietary protein and energy levels and their ratio will lead to increased fish production cost. This work evaluated effects of dietary protein : energy ratio on growth and body composition of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 +/- 0.4 g) were fed twice a day for 10 weeks until apparent satiation with diets containing 220, 260, 300, 340 or 380 g kg-1 crude protein (CP) and 10.9, 11.7, 12.6, 13.4 or 14.2 MJ kg-1 digestible energy (DE) in a totally randomized experimental design, 5 x 5 factorial scheme (n = 3). Weight gain, specific growth rate increased and feed conversion ratio (FCR) decreased significantly (P < 0.05) when CP increased from 220 to 271, 268 and 281 g kg-1 respectively. Pacu was able to adjust feed consumption in a wide range of dietary DE concentration. Fish fed 260 CP diets showed best (P < 0.05) protein efficiency ratio and FCR with 11.7-12.6 MJ kg-1; but for the 380 CP-diets group, significant differences were observed only at 14.2 MJ kg-1 dietary energy level, suggesting that pacu favours protein as energy source. DE was the chief influence on whole body chemical composition. Minimum dietary protein requirement of pacu is 270 g kg-1, with an optimum CP : DE of 22.2 g MJ-1.
Resumo:
Haematopoiesis and blood cells` functions can be influenced by dietary concentration of nutrients. This paper studied the effects of dietary protein:energy ratio on the growth and haematology of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 +/- 0.4 g) were fed twice a day for 10 weeks until apparent saciety with diets containing 220, 260, 300, 340 or 380 g kg(-1) crude protein (CP) and 10.88, 11.72, 12.55, 13.39, 14.22 MJ kg(-1) digestible energy (DE) in a totally randomized experimental design, 5 x 5 factorial scheme (n=3). Weight gain and specific growth rate were affected (P < 0.05) by protein level only. Protein efficiency ratio decreased (P < 0.05) with increasing dietary protein at all levels of dietary energy. Daily feed intake decreased (P < 0.05) with increasing dietary energy. Mean corpuscular haemoglobin concentration was affected (P < 0.05) by DE and interaction between dietary CP and DE. Total plasma protein increased (P < 0.05) with dietary protein and energy levels. Plasma glucose decreased (P < 0.05) with increasing dietary protein. The CP requirement and optimum protein:energy ratio for weight gain of pacu fingerlings, determined using broken-line model, were 271 g kg(-1) and 22.18 g CP MJ(-1) DE respectively. All dietary CP and DE levels studied did not pose damages to fish health.
Resumo:
P>Brazilian Santa Ines (SI) sheep are very well-adapted to the tropical conditions of Brazil and are an important source of animal protein. A high rate of twin births was reported in some SI flocks. Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15) are the first two genes expressed by the oocyte to be associated with an increased ovulation rate in sheep. All GDF9 and BMP15 variants characterized, until now, present the same phenotype: the heterozygote ewes have an increased ovulation rate and the mutated homozygotes are sterile. In this study, we have found a new allele of GDF9, named FecGE (Embrapa), which leads to a substitution of a phenylalanine with a cysteine in a conservative position of the mature peptide. Homozygote ewes presenting the FecGE allele have shown an increase in their ovulation rate (82%) and prolificacy (58%). This new phenotype can be very useful in better understanding the genetic control of follicular development; the mechanisms involved in the control of ovulation rate in mammals; and for the improvement of sheep production.
Resumo:
Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha(-1), with a RMSE of 538 kg DM ha(-1) (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Shoot elongation of Hancornia speciosa, an endangered tree from the Brazilian savannah ""Cerrado"", is very slow, thus limiting nursery production of plants. Gibberellins (GAs) A(1), A(3), and A(5), and two inhibitors of GA biosynthesis, trinexapac-ethyl and ancymidol were applied to shoots of Hancornia seedlings. GA(1) and GA(3) significantly stimulated shoot elongation, while GA(5) had no significant effect. Trinexapac-ethyl and ancymidol, both at 100 A mu g per seedling, inhibited shoot elongation up to 45 days after treatment, though the effect was statistically significant only for ancymidol. Somewhat surprisingly, exogenous GA(3) more effectively stimulated shoot elongation in SD-grown plants, than in LD-grown plants. The results from exogenous application of GAs and inhibitors of GA biosynthesis imply that Hancornia shoot growth is controlled by GAs, and that level of endogenous growth-active GAs is likely to be the limiting factor for shoot elongation in Hancornia. Application of GAs thus offer a practical method for nursery production of Hancornia seedlings for outplanting into the field.
Resumo:
Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.
Resumo:
Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of Gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containg the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood.
Resumo:
Stem discs from trees of known age were used to determine the periodic nature of the growth rings formed in Laguncularia racemosa and to describe the anatomical features of these rings. The growth rings were scarcely distinct on microscopic examination, but they were well distinguishable macroscopically, with alternating light brown and dark brown layers. Cross-dating analysis revealed the occurrence of annual growth rings in L. racemosa. The existence of annual growth rings in L. racemosa suggests that it may have great potential for dendrochronology and should encourage age-related studies on the dynamics of mangrove forests. These studies can be important for the evaluation of climate change impact on mangrove ecosystems, as well as for the analysis of effects related to climate variability on plant communities.
Resumo:
This work aimed to evaluate the effect of different concentrations of IBA (indolbutyric acid) in the rooting and growth of Eucalyptus urophylla cuttings. The experimental design used was the randomized blocks, in factorial with an arrangement of split plots, with three concentrations of IBA (2.000; 5.000 and 8.000 mg L(-1)), two ways of the application of plant gowth regulators (paste and powder), and three period of evaluations (30, 45 and 60 days). The experiment was carried out in the Farm Buriti de Prata, an entreprise property of Souza Cruz, in the city of Prata - MG in 2003. After the preparation of the cuttings, patterned in 10 cm of length and 0.8 cm of diameter, those were immersed in mixtures of IBA for 10 seconds, in the forms of dry powder and paste and than planted in plastic tubes contening Plantmax substrate with vermiculite. The cuttings were transported to greenhouse with controled humidity, where they remained for 60 days. The variables studied were: height of plant in the 30(th), 45(th) and 60(th) days after seeding; fresh mass of the aerial part and roots. The IBA applied in powder form as well as in paste form, resulted in an greater seedling growth. To the 60 days, the seedlings presented greater growth, being significantly superior to the heights measured in other times of evaluation. The application of 2.000 mg L(-1) and 5,000 mg L(-1) resulted in significant increases on weight of fresh mass of the aerial part and root system.