931 resultados para mitotic instability
Resumo:
Stress/recovery measurements demonstrate that even high-performance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias.
Resumo:
Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Stress/recovery measurements demonstrate that even highperformance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias. © 2011 SID.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to acoustic forcing in a laboratory-scale stratified burner. The double-swirler, double-channel annular burner was specially designed to generate acoustic velocity oscillations and radial fuel stratification at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the flame response are not considered. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a hot wire anemometer and photomultiplier tubes with narrowband OH*/CH* interference filters. Time-averaged CH* chemiluminescence intensities were measured using an intensified CCD camera. Results show that flame stabilization mechanisms vary depending on stratification ratio for a constant global equivalence ratio. For a uniformly premixed condition, an enveloped M-shaped flame is observed. For stratified conditions, however, a dihedral V-flame and a detached flame are developed for outer stream and inner stream fuel enrichment cases, respectively. Flame transfer function (FTF) measurement results indicate that a V-shaped flame tends to damp incident flow oscillations, while a detached flame acts as a strong amplifier relative to the uniformly premixed condition. The phase difference of FTF increases in the presence of stratification. More importantly, the dynamic characteristics obtained from the forced stratified flame measurements are well correlated with unsteady flame behavior under limit-cycle pressure oscillations. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, which has not been well explored to date. Copyright © 2011 by ASME.
Resumo:
The effect of surface tension on global stability of co-flow jets and wakes at a moderate Reynolds number is studied. The linear temporal two-dimensional global modes are computed without approximations. All but one of the flow cases under study are globally stable without surface tension. It is found that surface tension can cause the flow to be globally unstable if the inlet shear (or equivalently, the inlet velocity ratio) is strong enough. For even stronger surface tension, the flow is re-stabilized. As long as there is no change of the most unstable mode, increasing surface tension decreases the oscillation frequency. Short waves appear in the high-shear region close to the nozzle, and their wavelength increases with increasing surface tension. The critical shear (the weakest inlet shear at which a global instability is found) gives rise to antisymmetric disturbances for the wakes and symmetric disturbances for the jets. However, at stronger shear, the opposite symmetry can be the most unstable one, in particular for wakes at high surface tension. The results show strong effects of surface tension that should be possible to reproduce experimentally as well as numerically.
Resumo:
Motivated by applications such as gecko-inspired adhesives and microdevices featuring slender rod-like bodies, there has been an increase in interest in the deformed shapes of elastic rods adhering to rigid surfaces. A central issue in analyses of the rod-based models for these systems is the stability of the predicted equilibrium configurations. Such analyses can be complicated by the presence of intrinsic curvatures induced by fabrication processes. The results in the present paper are used to show how this curvature can lead to shear-induced bifurcations and instabilities. To characterize potential instabilities, a new set of necessary conditions for stability are employed which cater to the possible combinations of buckling and delaminating instabilities. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Hydrodynamic instabilities in gas turbine fuel injectors help to mix the fuel and air but can sometimes lock into acoustic oscillations and contribute to thermoacoustic instability. This paper describes a linear stability analysis that predicts the frequencies and strengths of hydrodynamic instabilities and identifies the regions of the flow that cause them. It distinguishes between convective instabilities, which grow in time but are convected away by the flow, and absolute instabilities, which grow in time without being convected away. Convectively unstable flows amplify external perturbations, while absolutely unstable flows also oscillate at intrinsic frequencies. As an input, this analysis requires velocity and density fields, either from a steady but unstable solution to the Navier-Stokes equations, or from time-averaged numerical simulations. In the former case, the analysis is a predictive tool. In the latter case, it is a diagnostic tool. This technique is applied to three flows: a swirling wake at Re = 400, a single stream swirling fuel injector at Re - 106, and a lean premixed gas turbine injector with five swirling streams at Re - 106. Its application to the swirling wake demonstrates that this technique can correctly predict the frequency, growth rate and dominant wavemaker region of the flow. It also shows that the zone of absolute instability found from the spatio-temporal analysis is a good approximation to the wavemaker region, which is found by overlapping the direct and adjoint global modes. This approximation is used in the other two flows because it is difficult to calculate their adjoint global modes. Its application to the single stream fuel injector demonstrates that it can identify the regions of the flow that are responsible for generating the hydrodynamic oscillations seen in LES and experimental data. The frequencies predicted by this technique are within a few percent of the measured frequencies. The technique also explains why these oscillations become weaker when a central jet is injected along the centreline. This is because the absolutely unstable region that causes the oscillations becomes convectively unstable. Its application to the lean premixed gas turbine injector reveals that several regions of the flow are hydrodynamically unstable, each with a different frequency and a different strength. For example, it reveals that the central region of confined swirling flow is strongly absolutely unstable and sets up a precessing vortex core, which is likely to aid mixing throughout the injector. It also reveals that the region between the second and third streams is slightly absolutely unstable at a frequency that is likely to coincide with acoustic modes within the combustion chamber. This technique, coupled with knowledge of the acoustic modes in a combustion chamber, is likely to be a useful design tool for the passive control of mixing and combustion instability. Copyright © 2012 by ASME.
Resumo:
The turbulent drag reduction due to riblets is a function of their size and, for different configurations, collapses well with a length scale l+g=(A+g)1/2, based in the groove cross-section Ag. The initially linear drag reduction breaks down for l+g≈11, which agrees in our DNS with the previously reported appearance of quasi-two-dimensional spanwise rollers immediately above the riblets. They are similar to those found over porous surfaces and plant canopies, and can be traced to a Kelvin-Helmholtz-like instability associated with the relaxation of the impermeability condition for the wall-normal velocity. The extra Reynolds stress associated with them accounts quantitatively for the drag degradation. An inviscid model for the instability confirms its nature, agreeing well with the observed perturbation wavelengths and shapes. The onset of the instability is determined by a length scale L+w that, for conventional riblet geometries, is proportional to l+g. The instability onset, L+w≥4, corresponds to the empirical breakdown point l+g≈11.
Resumo:
The laser-diode parameters at which the steady-state regime of generation becomes unstable are analyzed within the framework of the mode-locking model. The crucial role of the transverse inhomogeneity of the field, pumping intensity, and spectrum width in developing the instabilities of the steady-state regime of generation is demonstrated. The calculated values of the instability threshold are shown to be consistent with the experimental results. © 2008 Springer Science+Business Media, Inc.
Resumo:
The self-excited global instability mechanisms existing in flat-plate laminar separation bubbles are studied here, in order to shed light on the causes of unsteadiness and three- dimensionality of unforced, nominally two-dimensional separated flows. The presence of two known linear global mechanisms, namely an oscillator behavior driven by local regions of absolute inflectional instability and a centrifugal instability giving rise to a steady three- dimensionalization of the bubble, is studied in a series of model separation bubbles. Present results indicate that absolute instability, and consequently a global oscillator behavior, does not exist for two-dimensional bubbles with a peak reversed-flow velocity below 12% of the free-stream velocity. However, the three-dimensional instability becomes active for recirculation levels as low as urev ≈ 7%. These findings suggest a route to the three-dimensionality and unsteadiness observed in experiments and simulations substantially different from that usually found in the literature, in which two-dimensional vortex shedding is followed by three-dimensionalization.
Resumo:
The control of a class of combustion systems, suceptible to damage from self-excited combustion oscillations, is considered. An adaptive stable controller, called Self-Tuning Regulator (STR), has recently been developed, which meets the apparently contradictory challenge of relying as little as possible on a particular combustion model while providing some guarantee that the controller will cause no harm. The controller injects some fuel unsteadily into the burning region, thereby altering the heat release, in response to an input signal detecting the oscillation. This paper focuses on an extension of the STR design, when, due to stringent emission requirements and to the danger of flame extension, the amount of fuel used for control is limited in amplitude. A Lyapunov stability analysis is used to prove the stability of the modified STR when the saturation constraint is imposed. The practical implementation of the modified STR remains straightforward, and simulation results, based on the nonlinear premixed flame model developed by Dowling, show that in the presence of a saturation constraint, the self-excited oscillations are damped more rapidly with the modified STR than with the original STR. © 2001 by S. Evesque. Published by the American Institute of Aeronautics and Astronautics, Inc.