937 resultados para microphone arrays
Resumo:
We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical communication systems. © 2012 American Physical Society.
Resumo:
Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
Despite being nominated as a key potential interaction technique for supporting today's mobile technology user, the widespread commercialisation of speech-based input is currently being impeded by unacceptable recognition error rates. Developing effective speech-based solutions for use in mobile contexts, given the varying extent of background noise, is challenging. The research presented in this paper is part of an ongoing investigation into how best to incorporate speechbased input within mobile data collection applications. Specifically, this paper reports on a comparison of three different commercially available microphones in terms of their efficacy to facilitate mobile, speech-based data entry. We describe, in detail, our novel evaluation design as well as the results we obtained.
Resumo:
Long-lived light bullets fully localized in both space and time can be generated in novel photonic media such as multicore optical fiber or waveguide arrays. In this paper we present detailed theoretical analysis on the existence and stability of the discrete-continuous light bullets using a very generic model that occurs in a number of applications.
Resumo:
2000 Mathematics Subject Classification: 78A50
Resumo:
Highly sensitive and selective detection of volatile organic compounds (VOCs) with fast response time is imperative based on safety requirements, yet often remains a challenge. Herein, we propose an effective solution, preparing a novel gas sensor comprised of amorphous nanoflake arrays (a-NFAs) with specific surface groups. The sensor was produced via an extremely simple process in which a-NFAs of CdO were deposited directly onto an interdigital electrode immersed in a chemical bath under ambient conditions. Upon exposure to a widely used VOC, diethyl ether (DEE), the sensor exhibits excellent performance, more specifically, the quickest response, lowest detection limit and highest selectivity ever reported for DEE as a target gas. The superior gas-sensing properties of the prepared a-NFAs are found to arise from their open trumpet-shaped morphology, defect-rich amorphous nature, and surface CO groups.
Resumo:
The utilization of solar energy by photovoltaic (PV) systems have received much research and development (R&D) attention across the globe. In the past decades, a large number of PV array have been installed. Since the installed PV arrays often operate in harsh environments, non-uniform aging can occur and impact adversely on the performance of PV systems, especially in the middle and late periods of their service life. Due to the high cost of replacing aged PV modules by new modules, it is appealing to improve energy efficiency of aged PV systems. For this purpose, this paper presents a PV module reconfiguration strategy to achieve the maximum power generation from non-uniformly aged PV arrays without significant investment. The proposed reconfiguration strategy is based on the cell-unit structure of PV modules, the operating voltage limit of gird-connected converter, and the resulted bucket-effect of the maximum short circuit current. The objectives are to analyze all the potential reorganization options of the PV modules, find the maximum power point and express it in a proposition. This proposition is further developed into a novel implementable algorithm to calculate the maximum power generation and the corresponding reconfiguration of the PV modules. The immediate benefits from this reconfiguration are the increased total power output and maximum power point voltage information for global maximum power point tracking (MPPT). A PV array simulation model is used to illustrate the proposed method under three different cases. Furthermore, an experimental rig is built to verify the effectiveness of the proposed method. The proposed method will open an effective approach for condition-based maintenance of emerging aging PV arrays.
Resumo:
Charles Perry at the microphone in club setting. Charles Edward Perry (Chuck), 1937-1999, was the founding president of Florida International University in Miami, Florida. He grew up in Logan County, West Virginia and graduated from Bowling Green State University. He married Betty Laird in 1961. In 1969, at the age of 32, Perry was the youngest president of any university in the nation. The name of the university reflects Perry’s desire for a title that would not limit the scope of the institution and would support his vision of having close ties to Latin America. Perry and a founding corps opened FIU to 5,667 students in 1972 with only one large building housing six different schools. Perry left the office of President of FIU in 1976 when the student body had grown to 10,000 students and the university had six buildings, offered 134 different degrees and was fully accredited. Charles Perry died on August 30, 1999 at his home in Rockwall, Texas. He is buried on the FIU campus in front of the Graham Center entrance.
Resumo:
Charles Edward Perry (Chuck), 1937-1999, was the founding president of Florida International University in Miami, Florida. He grew up in Logan County, West Virginia and received his bachelor's and masters's degrees from Bowling Green State University. He married Betty Laird in 1960. In 1969, at the age of 32, Perry was the youngest president of any university in the nation. The name of the university reflects Perry’s desire for a title that would not limit the scope of the institution and would support his vision of having close ties to Latin America. Perry and a founding corps opened FIU to 5,667 students in 1972 with only one large building housing six different schools. Perry left the office of President of FIU in 1976 when the student body had grown to 10,000 students and the university had six buildings, offered 134 different degrees and was fully accredited. Charles Perry died on August 30, 1999 at his home in Rockwall, Texas. He is buried on the FIU campus in front of the Graham Center entrance.
Resumo:
We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.