979 resultados para microRNA Target Prediction
Resumo:
This work reports on the experimental and numerical study of the bending behaviour of two-dimensional adhesively-bonded scarf repairs of carbon-epoxy laminates, bonded with the ductile adhesive Araldite 2015®. Scarf angles varying from 2 to 45º were tested. The experimental work performed was used to validate a numerical Finite Element analysis using ABAQUS® and a methodology developed by the authors to predict the strength of bonded assemblies. This methodology consists on replacing the adhesive layer by cohesive elements, including mixed-mode criteria to deal with the mixed-mode behaviour usually observed in structures. Trapezoidal laws in pure modes I and II were used to account for the ductility of the adhesive used. The cohesive laws in pure modes I and II were determined with Double Cantilever Beam and End-Notched Flexure tests, respectively, using an inverse method. Since in the experiments interlaminar and transverse intralaminar failures of the carbon-epoxy components also occurred in some regions, cohesive laws to simulate these failure modes were also obtained experimentally with a similar procedure. A good correlation with the experiments was found on the elastic stiffness, maximum load and failure mode of the repairs, showing that this methodology simulates accurately the mechanical behaviour of bonded assemblies.
Resumo:
Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.
Resumo:
Dissertation presented to obtain a Masters degree in Computer Science
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 x 10(-3) m. The experimental data reveal that the target erosion depth profile is a function of the angle. made by B with a horizontal line defined by z = 2 x 10(-3) m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle theta. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.
Resumo:
Nonlinear Dynamics, Vol. 29
Resumo:
Proceedings of the European Control Conference, ECC’01, Porto, Portugal, September 2001
Resumo:
RESUMO A Esclerose Múltipla (EM) é uma doença desmielinizante crónica do Sistema Nervoso Central (SNC), provocada, em grande parte, por um ataque imuno-mediado contra diversos elementos da bainha de mielina. Dentro dos alvos antigénicos desta resposta autoimune, vários componentes proteicos e lipídicos da mielina têm vindo a ser identificados ao longo dos anos, entre os quais se destacam a proteína básica de mielina(MBP), glicoproteína ligodendrocitária da mielina (MOG), proteína proteolipídica (PLP) e glicoproteína associada à mielina (MAG). Com o desenvolvimento do modelo animal de Encefalomielite Autoimune Experimental (EAE), diversas terapias antigénio-específicas foram desenhadas, baseadas na modificação benéfica da resposta autoimune contra a mielina, tais como a administração de mielina ou seus componentes, os copolímeros terapêuticos, os ligandos peptídeos alterados e, recentemente, a vacinação com ácido desoxirribonucleico (ADN) codificador de proteínas de mielina, integrado em plasmídeos e purificado para administração parentérica. Neste trabalho, apresentamos os resultados de um extenso conjunto de experiências, subordinadas a dois temas fundamentais: 1) avaliação do potencial terapêutico, e dos mecanismos de acção, da vacinação tolerizadora com ADN codificador de proteínas de mielina (MBP, MOG, PLP, MAG) na EAE, e da associação desta vacinação com a administração de ADN de citocinas Th2, ou de oligonucleótidos imunomoduladores; 2) identificação e caracterização da resposta imune contra um novo componente da mielina com potencial antigénico, a proteína inibidora do recrescimento axonal, Nogo-A. No que respeita à vacinação com ADN, os nossos resultados comprovam a eficácia desta terapêutica antigénio-específica na prevenção e tratamento da EAE. Os seus mecanismos de acção incluem, entre outros, a supressão anérgica da proliferação antigénioespecífica dos linfócitos T anti-mielina (no modo de prevenção da doença), o enviesamento Th2 da resposta imune (quando co-administrada com a vacina de ADN codificadora da citocina IL-4, funcionando como terapia génica local), e a redução da diversificação de epítopos da resposta humoral anti-mielina, avaliada através de myelin spotted arrays. A associação das vacinas de ADN com oligonucleótidos imunomoduladores GpG, desenvolvidos para contrariar as sequências CpG imunoestimuladoras presentes no vector de vacinação, levou à melhoria da sua eficácia terapêutica, devida, provavelmente, ao efeito estimulador preferencial dos oligonucleótidos GpG sobre linfócitos Th2 e sobre células reguladoras NK-T. Com base nestes resultados a vacinação com ADN foi desenvolvida para o tratamento da EM em humanos, com ensaios clínicos a decorrerem neste momento. Em relação à proteína Nogo-A, estudos de estrutura primária e de previsão de antigenicidade identificaram a região Nogo-66 como alvo antigénico potencial para a EAE. Nas estirpes de ratinho SJL/J e C57BL/6, fomos capazes de induzir sinais clínicos e histológicos de EAE após imunização com os epítopos encefalitogénicos Nogo1-22, Nogo23- 44 e Nogo45-66, utilizando protocolos de quebra de tolerância imune. Ao mesmo tempo, identificámos e caracterizámos uma resposta linfocitária T específica contra os antigénios contidos na região Nogo-66, e uma resposta linfocitária B com diversificação intra e intermolecular a vários determinantes presentes noutras proteínas da mielina. A transferência adoptiva de linhas celulares Th2 anti-Nogo45-66, levou à melhoria clínica e histológica da EAE em animais recipientes induzidos com outros antigénios de mielina, após migração destas células para o SNC. Estes dados comprovam a importância da Nogo-66 como antigénio na EAE, e a eficácia de terapias antigénio-específicas nela baseadas. No seu conjunto, os nossos resultados confirmam o potencial terapêutico das vacinas de ADN codificadoras de proteínas de mielina, bem como a importância dos encefalitogénios contidos na proteína Nogo-A para a fisiopatologia da EAE e da EM, com eventual relevância para o desenvolvimento de novas terapias antigénio-específicas. O aperfeiçoamento futuro destas terapias poderá levar, eventualmente, a uma capacidade de manipulação da resposta imune que permita o tratamento eficaz das doenças inflamatórias desmielinizantes, como a Esclerose Múltipla. ABSTRACT Multiple Sclerosis (MS) is a chronic demyelinating disease of the Central Nervous System (CNS), caused, mainly, by an immune-mediated attack against several elements of the myelin sheath. Among the antigenic targets for this autoimmune response, several proteic and lipidic myelin components have been identified throughout the years, of which myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), proteolipidic protein (PLP), and myelin associated glycoprotein (MAG) are the best characterized. With the development of the animal model for MS, Experimental Autoimmune Encephalomyelitis (EAE), several antigen-specific therapies have been designed, based on beneficial modifications of the autoimmune response against myelin. These have included myelin and myelin component administration, therapeutic copolymers, altered peptide ligands and, more recently, vaccination with myelin-protein encoding deoxyribonucleic acid (DNA), integrated into plasmids and purified for parenteral administration. In this work we present the results of an extensive series of experiments, subordinate to two fundamental areas: 1) evaluating the therapeutic potential, and mechanisms of action, of tolerizing myelin protein (MBP, MOG, PLP, MAG) DNA vaccination in EAE, alone and in association with Th2 cytokine DNA administration, or immunomodulatory oligonucleotides; 2) identifying and characterizing the immuneresponse against a new myelin component with antigenic potential, the axonal regrowth inhibitor Nogo-A. Regarding DNA vaccination, our results prove the efficacy of this antigen-specific therapy for the prevention and treatment of EAE. Its mechanisms of action include, among others, anergic suppression of antigen-specific T-cell proliferation against myelin (in prevention mode), Th2 biasing of the immune response (when co-administered with the IL- 4 codifying DNA vaccine, acting as local gene therapy), and reduction of epitope spreading of the anti-myelin antibody response, assessed by myelin spotted arrays. The combination of myelin DNA vaccination with the administration of GpG immunomodulatory oligonucleotides, designed to counteract immunostimulatory CpG motifs present in the vaccination vector, led to an improvement in therapeutic efficacy, probably due to the preferential stimulatory effect of GpG oligonucleotides on Th2 lymphocytes and on regulatory NK-T cells. Based on these results, tolerizing DNA vaccination is being developed for human use, with ongoing clinical trials. As concerns the Nogo-A protein, based on studies of primary structure and prediction of antigenicity, we identified the Nogo-66 region (responsible for the most of the inhibitory capacity of this protein) as a potential antigenic target for EAE. In the SJL/Jand C57BL/6 mouse strains, we were able to induce clinical and histological signs of EAE,after immunization with the encefalitogenic epitopes Nogo1-22, Nogo23-44 and Nogo45-66,using a tolerance breakdown protocol. Concomitantly, we identified and characterized a specific T cell response against these antigens, together with a B cell response which showed extensive intra and intermolecular epitope spread to several determinants present in other myelin proteins. Adoptive transfer of nti-Nogo45-66 Th2 cell lines resulted in clinical and histological improvement of EAE in recipient animals induced with other myelin antigens, after intraparenchymal CNS migration of anti-Nogo cells. These data confirm the relevance of Nogo-66 as an antigen in EAE, as well as the efficacy of antigenspecific therapies based on the response against this protein.In conclusion, our results substantiate the therapeutic potential of myelin-encoding DNA vaccination, as well as the importance of encefalitogenic epitopes present in the Nogo-A protein for the pathophysiology of EAE and MS, with potential relevance for the creation of new antigen specific-therapies. The future development of these therapies may eventually lead to a degree of manipulation of the immune response that allows the effective treatment of autoimmune, inflammatory, demyelinating diseases, such as Multiple Sclerosis.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
1st ASPIC International Congress
Resumo:
This article investigates the limit cycle (LC) prediction of systems with backlash by means of the describing function (DF) when using discrete fractional-order (FO) algorithms. The DF is an approximate method that gives good estimates of LCs. The implementation of FO controllers requires the use of rational approximations, but such realizations produce distinct dynamic types of behavior. This study analyzes the accuracy in the prediction of LCs, namely their amplitude and frequency, when using several different algorithms. To illustrate this problem we use FO-PID algorithms in the control of systems with backlash.
Resumo:
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on short- time stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
Resumo:
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.
Resumo:
Oceans - San Diego, 2013