923 resultados para medical image processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Image filtering techniques have potential applications in biomedical image processing such as image restoration and image enhancement. The potential of traditional filters largely depends on the apriori knowledge about the type of noise corrupting the image. This makes the standard filters to be application specific. For example, the well-known median filter and its variants can remove the salt-and-pepper (or impulse) noise at low noise levels. Each of these methods has its own advantages and disadvantages. In this paper, we have introduced a new finite impulse response (FIR) filter for image restoration where, the filter undergoes a learning procedure. The filter coefficients are adaptively updated based on correlated Hebbian learning. This algorithm exploits the inter pixel correlation in the form of Hebbian learning and hence performs optimal smoothening of the noisy images. The application of the proposed filter on images corrupted with Gaussian noise, results in restorations which are better in quality compared to those restored by average and Wiener filters. The restored image is found to be visually appealing and artifact-free

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of split lenses for multiple imaging and multichannel optical processing is demonstrated. Conditions are obtained for nonoverlapping of multipled images and avoiding crosstalk in the multichannel processing. Almost uniform intensity across the multipled images is an advantage here, while the low ƒ/No. of the split lens segments puts a limit in the resolution in image processing. Experimental results of multiple imaging and of a few multichannel processing are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Image fusion techniques are useful to integrate the geometric detail of a high-resolution panchromatic (PAN) image and the spectral information of a low-resolution multispectral (MSS) image, particularly important for understanding land use dynamics at larger scale (1:25000 or lower), which is required by the decision makers to adopt holistic approaches for regional planning. Fused images can extract features from source images and provide more information than one scene of MSS image. High spectral resolution aids in identification of objects more distinctly while high spatial resolution allows locating the objects more clearly. The geoinformatics technologies with an ability to provide high-spatial-spectral-resolution data helps in inventorying, mapping, monitoring and sustainable management of natural resources. Fusion module in GRDSS, taking into consideration the limitations in spatial resolution of MSS data and spectral resolution of PAN data, provide high-spatial-spectral-resolution remote sensing images required for land use mapping on regional scale. GRDSS is a freeware GIS Graphic User Interface (GUI) developed in Tcl/Tk is based on command line arguments of GRASS (Geographic Resources Analysis Support System) with the functionalities for raster analysis, vector analysis, site analysis, image processing, modeling and graphics visualization. It has the capabilities to capture, store, process, analyse, prioritize and display spatial and temporal data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a technique for irreversible watermarking approach robust to affine transform attacks in camera, biomedical and satellite images stored in the form of monochrome bitmap images. The watermarking approach is based on image normalisation in which both watermark embedding and extraction are carried out with respect to an image normalised to meet a set of predefined moment criteria. The normalisation procedure is invariant to affine transform attacks. The result of watermarking scheme is suitable for public watermarking applications, where the original image is not available for watermark extraction. Here, direct-sequence code division multiple access approach is used to embed multibit text information in DCT and DWT transform domains. The proposed watermarking schemes are robust against various types of attacks such as Gaussian noise, shearing, scaling, rotation, flipping, affine transform, signal processing and JPEG compression. Performance analysis results are measured using image processing metrics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Image segmentation is formulated as a stochastic process whose invariant distribution is concentrated at points of the desired region. By choosing multiple seed points, different regions can be segmented. The algorithm is based on the theory of time-homogeneous Markov chains and has been largely motivated by the technique of simulated annealing. The method proposed here has been found to perform well on real-world clean as well as noisy images while being computationally far less expensive than stochastic optimisation techniques

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Western Blot analysis is an analytical technique used in Molecular Biology, Biochemistry, Immunogenetics and other Molecular Biology studies to separate proteins by electrophoresis. The procedure results in images containing nearly rectangular-shaped blots. In this paper, we address the problem of quantitation of the blots using automated image processing techniques. We formulate a special active contour (or snake) called Oblong, which locks on to rectangular shaped objects. Oblongs depend on five free parameters, which is also the minimum number of parameters required for a unique characterization. Unlike many snake formulations, Oblongs do not require explicit gradient computations and therefore the optimization is carried out fast. The performance of Oblongs is assessed on synthesized data and Western Blot Analysis images.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we propose FeatureMatch, a generalised approximate nearest-neighbour field (ANNF) computation framework, between a source and target image. The proposed algorithm can estimate ANNF maps between any image pairs, not necessarily related. This generalisation is achieved through appropriate spatial-range transforms. To compute ANNF maps, global colour adaptation is applied as a range transform on the source image. Image patches from the pair of images are approximated using low-dimensional features, which are used along with KD-tree to estimate the ANNF map. This ANNF map is further improved based on image coherency and spatial transforms. The proposed generalisation, enables us to handle a wider range of vision applications, which have not been tackled using the ANNF framework. We illustrate two such applications namely: 1) optic disk detection and 2) super resolution. The first application deals with medical imaging, where we locate optic disks in retinal images using a healthy optic disk image as common target image. The second application deals with super resolution of synthetic images using a common source image as dictionary. We make use of ANNF mappings in both these applications and show experimentally that our proposed approaches are faster and accurate, compared with the state-of-the-art techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fringe tracking and fringe order assignment have become the central topics of current research in digital photoelasticity. Isotropic points (IPs) appearing in low fringe order zones are often either overlooked or entirely missed in conventional as well as digital photoelasticity. We aim to highlight image processing for characterizing IPs in an isochromatic fringe field. By resorting to a global analytical solution of a circular disk, sensitivity of IPs to small changes in far-field loading on the disk is highlighted. A local theory supplements the global closed-form solutions of three-, four-, and six-point loading configurations of circular disk. The local theoretical concepts developed in this paper are demonstrated through digital image analysis of isochromatics in circular disks subjected to three-and four-point loads. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We address the problem of denoising images corrupted by multiplicative noise. The noise is assumed to follow a Gamma distribution. Compared with additive noise distortion, the effect of multiplicative noise on the visual quality of images is quite severe. We consider the mean-square error (MSE) cost function and derive an expression for an unbiased estimate of the MSE. The resulting multiplicative noise unbiased risk estimator is referred to as MURE. The denoising operation is performed in the wavelet domain by considering the image-domain MURE. The parameters of the denoising function (typically, a shrinkage of wavelet coefficients) are optimized for by minimizing MURE. We show that MURE is accurate and close to the oracle MSE. This makes MURE-based image denoising reliable and on par with oracle-MSE-based estimates. Analogous to the other popular risk estimation approaches developed for additive, Poisson, and chi-squared noise degradations, the proposed approach does not assume any prior on the underlying noise-free image. We report denoising results for various noise levels and show that the quality of denoising obtained is on par with the oracle result and better than that obtained using some state-of-the-art denoisers.