930 resultados para matrix-assisted laser desorption-mass spectrometry (MALDI-MS)
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Resumo:
Polyphasic analysis was done on 24 strains of Bisgaard taxon 16 from five European countries and mainly isolated from dogs and human dog-bite wounds. The isolates represented a phenotypically and genetically homogenous group within the family Pasteurellaceae. Their phenotypic profile was similar to members of the genus Pasteurella. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry clearly identified taxon 16 and separated it from all other genera of Pasteurellaceae showing a characteristic peak combination. Taxon 16 can be further separated and identified by a RecN protein signature sequence detectable by a specific PCR. In all phylogenetic analyses based on 16S rRNA, rpoB, infB and recN genes, taxon 16 formed a monophyletic branch with intraspecies sequence similarity of at least 99.1, 90.8, 96.8 and 97.2 %, respectively. Taxon 16 showed closest genetic relationship with Bibersteinia trehalosi as to the 16S rRNA gene (95.9 %), the rpoB (89.8 %) and the recN (74.4 %), and with Actinobacillus lignieresii for infB (84.9 %). Predicted genome similarity values based on the recN gene sequences between taxon 16 isolates and the type strains of known genera of Pasteurellaceae were below the genus level. Major whole cell fatty acids for the strain HPA 21(T) are C14:0, C16:0, C18:0 and C16:1 ω7c/C15:0 iso 2OH. Major respiratory quinones are menaquinone-8, ubiquinone-8 and demethylmenaquinone-8. We propose to classify these organisms as a novel genus and species within the family of Pasteurellaceae named Frederiksenia canicola gen. nov., sp. nov. The type strain is HPA 21(T) (= CCUG 62410(T) = DSM 25797(T)).
Resumo:
DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular "parentage SNP" varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF≥0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent's genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(-39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world's sheep breeds.
Resumo:
Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity.
Resumo:
Fibroblast growth factor (FGF) 1 and FGF-2 are prototypic members of the FGF family, which to date comprises at least 18 members. Surprisingly, even though FGF-1 and FGF-2 share more than 80% sequence similarity and an identical structural fold, these two growth factors are biologically very different. FGF-1 and FGF-2 differ in their ability to bind isoforms of the FGF receptor family as well as the heparin-like glycosaminoglycan (HLGAG) component of proteoglycans on the cell surface to initiate signaling in different cell types. Herein, we provide evidence for one mechanism by which these two proteins could differ biologically. Previously, it has been noted that FGF-1 and FGF-2 can oligomerize in the presence of HLGAGs. Therefore, we investigated whether FGF-1 and FGF-2 oligomerize by the same mechanism or by a different one. Through a combination of matrix-assisted laser desorption ionization mass spectrometry and chemical crosslinking, we show here that, under identical conditions, FGF-1 and FGF-2 differ in the degree and kind of oligomerization. Furthermore, an extensive analysis of FGF-1 and FGF-2 uncomplexed and HLGAG complexed crystal structures enables us to readily explain why FGF-2 forms sequential oligomers whereas FGF-1 forms only dimers. FGF-2, which possesses an interface capable of protein association, forms a translationally related oligomer, whereas FGF-1, which does not have this interface, forms only a symmetrically related dimer. Taken together, these data show that FGF-1 and FGF-2, despite their sequence homology, differ in their mechanism of oligomerization.
Resumo:
Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by a disulfide-exchange reaction with the pyridylthio group, and the derivatized rhodopsin then is complexed with T by illumination at λ >495 nm. Subsequent irradiation of the complex at λ310 nm generates covalent crosslinks between the two proteins. Crosslinking was demonstrated between T and a number of single cysteine rhodopsin mutants. However, sites of crosslinks were investigated in detail only between T and the rhodopsin mutant S240C (cytoplasmic loop V-VI). Crosslinking occurred predominantly with Tα. For identification of the sites of crosslinks in Tα, the strategy used involved: (i) derivatization of all of the free cysteines in the crosslinked proteins with N-ethylmaleimide; (ii) reduction of the disulfide bond linking the two proteins and isolation of all of the Tα species carrying the crosslinked moiety with a free SH group; (iii) adduct formation of the latter with the N-maleimide moiety of the reagent, maleimido-butyryl-biocytin, containing a biotinyl group; (iv) trypsin degradation of the resulting Tα derivatives and isolation of Tα peptides carrying maleimido-butyryl-biocytin by avidin-agarose chromatography; and (v) identification of the isolated peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We found that crosslinking occurred mainly to two C-terminal peptides in Tα containing the amino acid sequences 310–313 and 342–345.
Resumo:
Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was carried out by illumination at λ > 495 nm. Subsequent increase in pH (from 6 to 7.5 or higher) of the complex resulted in crosslinking of rhodopsin to the Tα subunit. Crosslinking to Tα was demonstrated for the rhodopsin mutants K141C, S240C, and K248C, and the crosslinked sites in Tα were identified for the rhodopsin mutant S240C. The peptides carrying the crosslinking moiety were isolated from the trypsin-digested peptide mixture, and their identification was carried out by matrix-assisted laser desorption ionization–time of flight mass spectrometry. The main site of crosslinking is within the peptide sequence, Leu-19–Arg-28 at the N-terminal region of Tα. The total results show that both the N and the C termini of Tα are in close vicinity to the third cytoplasmic loop of rhodopsin in the complex between rhodopsin and T.
Phosphoglycerylethanolamine Posttranslational Modification of Plant Eukaryotic Elongation Factor 1α1
Resumo:
Eukaryotic elongation factor 1α (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.
Resumo:
Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.
Resumo:
Leishmania resistant to arsenicals and antimonials extrude arsenite. Previous results of arsenite uptake into plasma membrane-enriched vesicles suggested that the transported species is a thiol adduct of arsenite. In this paper, we demonstrate that promastigotes of arsenite-resistant Leishmania tarentolae have increased levels of intracellular thiols. High-pressure liquid chromatography of the total thiols showed that a single peak of material was elevated almost 40-fold. The major species in this peak was identified by matrix-assisted laser desorption/ionization mass spectrometry as N1,N8-bis-(glutathionyl)spermidine (trypanothione). The trypanothione adduct of arsenite was effectively transported by the As-thiol pump. No difference in pump activity was observed in wild type and mutants. A model for drug resistance is proposed in which Sb(V)/As(V)-containing compounds, including the antileishmanial drug Pentostam, are reduced intracellularly to Sb(III)/As(III), conjugated to trypanothione, and extruded by the As-thiol pump. The rate-limiting step in resistance is proposed to be formation of the metalloid-thiol pump substrates, so that increased synthesis of trypanothione produces resistance. Increased synthesis of the substrate rather than an increase in the number of pump molecules is a novel mechanism for drug resistance.
Resumo:
A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.
Resumo:
The aims of the current study were to describe presence and clinical role over time of Streptococcus pluranimalium isolated in milk samples of Mediterranean buffalo (MB). Two hundred composite milk samples originating from 40 primiparous MB were collected at 10, 30, 60, 90, and 150d in milk (DIM) and from 20 pluriparous MB at 77 to 120 DIM. Milk samples were used for analysis of somatic cell counts, bacteriological cultures, and identification (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry). Nine of 200 (4.5%) samples of primiparous MB and 3 of 20 (15%) samples of pluriparous MB were positive for Strep. pluranimalium. The prevalence of the bacterium in primipari was 0% (0/40) at 10, 30, and 150 DIM, whereas it was 5 (2/40) and 17.5% (7/40) at 60 and 90 DIM, respectively. Eight primipari were positive only once, whereas 1 was positive at 2 different samplings. Mono-infection was not detected in any of the age categories or udder health status. Infections were transient in primipari. Clinical mastitis was observed in primipari once at 90 DIM, subclinical mastitis detected twice in the same animals at 60 and 90 DIM, and intramammary infections were diagnosed 1 and 5 times at 60 and 90 DIM in primipari, respectively, whereas 3 infections were diagnosed in pluripari. The clinical reflections demonstrate for the first time the presence of Strep. pluranimalium in MB and its association with different udder health status. Nevertheless, it cannot be excluded that the bacterium may simply follow a pattern of commensal or opportunistic behavior, taking advantage of a preexisting bacterial udder infection.
Resumo:
A common single nucleotide polymorphism (SNP) in the 5' untranslated region (5'UTR) of the epidermal growth factor (EGF) gene modulates the level of transcription of this gene and hence is associated with serum levels of EGF. This variant may be associated with melanoma risk, but conflicting findings have been reported. An Australian melanoma case-control sample was typed for the EGF+61A>G transversion (rs4444903). The sample comprised 753 melanoma cases from 738 families stratified by family history of melanoma and 2387 controls from 645 unselected twin families. Ancestry of the cases and controls was recorded, and the twins had undergone skin examination to assess total body nevus count, degree of freckling and pigmentation phenotype. SNP genotyping was carried out via primer extension followed by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The EGIF+61 SNP was not found to be significantly associated with melanoma status or with development of nevi or freckles. Among melanoma cases, however, G homozygotes had thicker tumors (p=0.05), in keeping with two previous studies. The EGF polymorphism does not appear to predispose to melanoma or nevus development, but its significant association with tumor thickness implies that it may be a useful marker of prognosis.
Resumo:
The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.