946 resultados para mathematical modelling of soil erosion
Resumo:
The seismic performance of waterfront cantilever sheet pile retaining walls is of continuing interest to geotechnical engineers as these structures suffer severe damage and even complete failure during earthquakes. This is often precipitated by liquefaction of the surrounding soil, either in the backfill or in front of the wall. This paper presents results from a series of small-scale plane strain models that were tested on a 1-g shaking table and recorded using a high-speed, high-resolution digital camera. The technique of Particle Image Velocimetry (PIV) was applied in order to allow the failure mechanisms to be visualised. It is shown that using PIV analyses it is possible to obtain failure mechanisms for a cantilever wall in liquefiable soil. These failure mechanisms are compared with those obtained for a cantilever wall in dry soil, previously carried out at a similar scale. It was observed that seismic liquefaction causes significant displacement in much larger zones of soil near the retaining wall compared to an equivalent dry case. The failure mechanism for a cantilever wall with liquefiable backfill, but with a remediated zone designed not to liquefy, is also presented and compared to the unremediated case.
Resumo:
This paper describes four centrifuge tests investigating the performance of non-structural inclined micro-piles as a liquefaction remediation method for existing buildings. Two soil profiles with the same superstructure founded on each were tested under earthquakes of different magnitudes and durations. The first profile consisted of a deep, homogeneous layer of loose, liquefiable sand. The second comprised a shallow layer of loose sand overlying dense sand. Centrifuge tests were carried out with and without inclined micro-piles in each soil profile. The superstructure was modelled as an idealised single degree of freedom (SDOF) system. It is found that the micro-piles have no detrimental effect on the performance of the structure during and after earthquakes. It is also possible that their presence may decrease structural settlements in earthquakes which cause liquefaction to a depth less than that of the improved zone. However, no conclusive evidence is obtained to show that the micro-piles significantly restrain lateral soil movement due to monotonic shearing from the structure or impede the migration of excess pore pressures from the free field to the foundation zone. Both these processes have critical effects on structural settlement. The use of inclined micro-piles for liquefaction remediation should therefore be considered with caution.
Resumo:
Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.
Resumo:
The response of surface structures to tunnelling induced ground movements is an area of great importance for any urban tunnelling project. Testing described in this paper aims to investigate soil structure interaction effects by observing the response of aluminium beams of varying stiffness to tunnelling, using the 8 m diameter beam centrifuge at Cambridge University. Soil and structure displacements are extensively monitored through a photo imaging technique which enables a detailed analysis of the interaction behaviour. Results to date indicate that the relative structure-soil stiffness is the governing factor in determining how a structure will respond to tunnelling. This parameter is highly dependent on both the structure and soil stiffness. It is also shown that contrary to common assumptions in the literature, negligible axial strains are transferred into the structure. This paper outlines the results of the research to date. © 2010 Taylor & Francis Group, London.
Resumo:
Understanding how buildings respond to tunnelling induced ground movements is an area of great importance for many urban tunnelling projects. Testing described in this paper aims to investigate soil structure interaction effects by observing the response of elastic and non elastic beams of varying stiffness and geometry to tunnelling, using the 8 m diameter beam centrifuge at Cambridge University. Soil and structure displacements are extensively monitored through a photo imaging technique which enables a detailed analysis of the interaction mechanisms. Results demonstrate that buildings can significantly modify greenfield ground movements in both the vertical and horizontal planes. The magnitude of the modification is shown to be strongly dependent on the relative building stiffness. It is also shown that negligible horizontal strains are transferred into the model buildings. This can have significant implications for commonly adopted damage assessment methods. © 2012 Taylor & Francis Group.
Resumo:
Water front structures have suffered significant damage in many of the recent earthquakes. These include gravity type quay walls, vertically composite walls, cantilever retaining walls, anchored bulkheads and similar structures. One of the primary causes for the poor performance of these classes of structures is the liquefaction of the foundation soil and in some instances liquefaction of the backfill soil. The liquefaction of the soil in-front of the quay wall tends to cause large lateral displacements and rotation of the wall. Often such gravity walls are placed on rubble mound deposited onto the sea bed.This paper presents finite element analyses of such a problem in which strength degradation of the foundation soil and the backfill material will be modelled using PZ mark III constitutive model. The performance of the wall in terms of its lateral displacement, vertical settlement and/or the rotation suffered by the wall will be presented. In addition, the contours of the horizontal and vertical effective stresses and the excess pore pressure ratio will be presented at different time instants together with hyrdraulic gradients. Immediately after the earthquake, the hydraulic gradients indicate migration of pore water into the region below the wall, suggesting further softening of the foundation soil below the wall.
Resumo:
The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.
Resumo:
Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.
Resumo:
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.