969 resultados para mass-gatherings model
Resumo:
Among unidentified gamma-ray sources in the galactic plane, there are some that present significant variability and have been proposed to be high-mass microquasars. To deepen the study of the possible association between variable low galactic latitude gamma-ray sources and microquasars, we have applied a leptonic jet model based on the microquasar scenario that reproduces the gamma-ray spectrum of three unidentified gamma-ray sources, 3EG J1735-1500, 3EG J1828+0142 and GRO J1411-64, and is consistent with the observational constraints at lower energies. We conclude that if these sources were generated by microquasars, the particle acceleration processes could not be as efficient as in other objects of this type that present harder gamma-ray spectra. Moreover, the dominant mechanism of high-energy emission should be synchrotron self-Compton (SSC) scattering, and the radio jets may only be observed at low frequencies. For each particular case, further predictions of jet physical conditions and variability generation mechanisms have been made in the context of the model. Although there might be other candidates able to explain the emission coming from these sources, microquasars cannot be excluded as counterparts. Observations performed by the next generation of gamma-ray instruments, like GLAST, are required to test the proposed model.
Resumo:
Context. The understanding of Galaxy evolution can be facilitated by the use of population synthesis models, which allow to test hypotheses on the star formation history, star evolution, as well as chemical and dynamical evolution of the Galaxy. Aims. The new version of the Besanc¸on Galaxy Model (hereafter BGM) aims to provide a more flexible and powerful tool to investigate the Initial Mass Function (IMF) and Star Formation Rate (SFR) of the Galactic disc. Methods. We present a new strategy for the generation of thin disc stars which assumes the IMF, SFR and evolutionary tracks as free parameters. We have updated most of the ingredients for the star count production and, for the first time, binary stars are generated in a consistent way. We keep in this new scheme the local dynamical self-consistency as in Bienayme et al (1987). We then compare simulations from the new model with Tycho-2 data and the local luminosity function, as a first test to verify and constrain the new ingredients. The effects of changing thirteen different ingredients of the model are systematically studied. Results. For the first time, a full sky comparison is performed between BGM and data. This strategy allows to constrain the IMF slope at high masses which is found to be close to 3.0, excluding a shallower slope such as Salpeter"s one. The SFR is found decreasing whatever IMF is assumed. The model is compatible with a local dark matter density of 0.011 M pc−3 implying that there is no compelling evidence for significant amount of dark matter in the disc. While the model is fitted to Tycho2 data, a magnitude limited sample with V<11, we check that it is still consistent with fainter stars. Conclusions. The new model constitutes a new basis for further comparisons with large scale surveys and is being prepared to become a powerful tool for the analysis of the Gaia mission data.
Resumo:
BACKGROUND: Recent methodological advances allow better examination of speciation and extinction processes and patterns. A major open question is the origin of large discrepancies in species number between groups of the same age. Existing frameworks to model this diversity either focus on changes between lineages, neglecting global effects such as mass extinctions, or focus on changes over time which would affect all lineages. Yet it seems probable that both lineages differences and mass extinctions affect the same groups. RESULTS: Here we used simulations to test the performance of two widely used methods under complex scenarios of diversification. We report good performances, although with a tendency to over-predict events with increasing complexity of the scenario. CONCLUSION: Overall, we find that lineage shifts are better detected than mass extinctions. This work has significance to assess the methods currently used to estimate changes in diversification using phylogenetic trees. Our results also point toward the need to develop new models of diversification to expand our capabilities to analyse realistic and complex evolutionary scenarios.
Resumo:
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy. In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging (TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking. We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by integrating metabolomic and proteomics results.
Resumo:
OBJECTIVE: To quantify the relation between body mass index (BMI) and endometrial cancer risk, and to describe the shape of such a relation. DESIGN: Pooled analysis of three hospital-based case-control studies. SETTING: Italy and Switzerland. POPULATION: A total of 1449 women with endometrial cancer and 3811 controls. METHODS: Multivariate odds ratios (OR) and 95% confidence intervals (95% CI) were obtained from logistic regression models. The shape of the relation was determined using a class of flexible regression models. MAIN OUTCOME MEASURE: The relation of BMI with endometrial cancer. RESULTS: Compared with women with BMI 18.5 to <25 kg/m(2) , the odds ratio was 5.73 (95% CI 4.28-7.68) for women with a BMI ≥35 kg/m(2) . The odds ratios were 1.10 (95% CI 1.09-1.12) and 1.63 (95% CI 1.52-1.75) respectively for an increment of BMI of 1 and 5 units. The relation was stronger in never-users of oral contraceptives (OR 3.35, 95% CI 2.78-4.03, for BMI ≥30 versus <25 kg/m(2) ) than in users (OR 1.22, 95% CI 0.56-2.67), and in women with diabetes (OR 8.10, 95% CI 4.10-16.01, for BMI ≥30 versus <25 kg/m(2) ) than in those without diabetes (OR 2.95, 95% CI 2.44-3.56). The relation was best fitted by a cubic model, although after the exclusion of the 5% upper and lower tails, it was best fitted by a linear model. CONCLUSIONS: The results of this study confirm a role of elevated BMI in the aetiology of endometrial cancer and suggest that the risk in obese women increases in a cubic nonlinear fashion. The relation was stronger in never-users of oral contraceptives and in women with diabetes. TWEETABLE ABSTRACT: Risk of endometrial cancer increases with elevated body weight in a cubic nonlinear fashion.
Resumo:
BACKGROUND: Obesity and substance use are major concern in young people. This study explored the bidirectional longitudinal relationships between the body mass index (BMI) of young men and their use of: 1) four classes of non-medical prescription drugs; 2) alcohol; 3) tobacco; and 4) cannabis. METHODS: Baseline and follow-up data from the Cohort Study on Substance Use Risk Factors were used (n=5,007). A cross-lagged panel model, complemented by probit models as sensitivity analysis, was run to determine the bidirectional relationships between BMI and substance use. Alcohol was assessed using risky single-occasion drinking (RSOD); tobacco, using daily smoking; and cannabis, using hazardous cannabis use (defined as twice-weekly or more cannabis use). Non-medical prescription drugs use (NMPDU) included opioid analgesics, sedatives/sleeping pills, anxiolytics and stimulants. RESULTS: Different associations were found between BMI and substance use. Only RSOD (β= -.053, p=.005) and NMPDU of anxiolytics (β=.040, p=.020) at baseline significantly predicted BMI at follow-up. Baseline RSOD predicted a lower BMI at follow-up while baseline NMPDU of anxiolytics predicted higher BMI at follow-up. Furthermore, BMI at baseline significantly predicted daily smoking (β=.050, p=.007) and hazardous cannabis use (β=.058, p=.030). CONCLUSIONS: Our results suggest different associations between BMI and the use of various substances by young men. However, only RSOD and NMPDU of anxiolytics predicted BMI, whereas BMI predicted daily smoking and hazardous cannabis use.
Resumo:
BACKGROUND: Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. METHODS: We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m(2) [underweight], 18·5 kg/m(2) to <20 kg/m(2), 20 kg/m(2) to <25 kg/m(2), 25 kg/m(2) to <30 kg/m(2), 30 kg/m(2) to <35 kg/m(2), 35 kg/m(2) to <40 kg/m(2), ≥40 kg/m(2) [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. FINDINGS: We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m(2) (95% credible interval 21·3-22·1) in 1975 to 24·2 kg/m(2) (24·0-24·4) in 2014 in men, and from 22·1 kg/m(2) (21·7-22·5) in 1975 to 24·4 kg/m(2) (24·2-24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m(2) in central Africa and south Asia to 29·2 kg/m(2) (28·6-29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m(2) (21·4-22·3) in south Asia to 32·2 kg/m(2) (31·5-32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5-17·4) to 8·8% (7·4-10·3) in men and from 14·6% (11·6-17·9) to 9·7% (8·3-11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8-29·2) in men and 24·0% (18·9-29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4-4·1) in 1975 to 10·8% (9·7-12·0) in 2014 in men, and from 6·4% (5·1-7·8) to 14·9% (13·6-16·1) in women. 2·3% (2·0-2·7) of the world's men and 5·0% (4·4-5·6) of women were severely obese (ie, have BMI ≥35 kg/m(2)). Globally, prevalence of morbid obesity was 0·64% (0·46-0·86) in men and 1·6% (1·3-1·9) in women. INTERPRETATION: If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world's poorest regions, especially in south Asia. FUNDING: Wellcome Trust, Grand Challenges Canada.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.
Resumo:
Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2. The technique typically employs a dual fluidized bed system where a metal oxide is used as a solid oxygen carrier that transfers the oxygen from combustion air to the fuel. The oxygen carrier is looping between the air reactor, where it is oxidized by the air, and the fuel reactor, where it is reduced by the fuel. Hence, air is not mixed with the fuel, and outgoing CO2 does not become diluted by the nitrogen, which gives a possibility to collect the CO2 from the flue gases after the water vapor is condensed. CLC is being proposed as a promising and energy efficient carbon capture technology, since it can achieve both an increase in power station efficiency simultaneously with low energy penalty from the carbon capture. The outcome of a comprehensive literature study concerning the current status of CLC development is presented in this thesis. Also, a steady state model of the CLC process, based on the conservation equations of mass and energy, was developed. The model was used to determine the process conditions and to calculate the reactor dimensions of a 100 MWth CLC system with bunsenite (NiO) as oxygen carrier and methane (CH4) as fuel. This study has been made in Oxygen Carriers and Their Industrial Applications research project (2008 – 2011), funded by the Tekes – Functional Material program. I would like to acknowledge Tekes and participating companies for funding and all project partners for good and comfortable cooperation.
Resumo:
In this thesis the main objective is to examine and model configuration system and related processes. When and where configuration information is created in product development process and how it is utilized in order-delivery process? These two processes are the essential part of the whole configuration system from the information point of view. Empirical part of the work was done as a constructive research inside a company that follows a mass customization approach. Data models and documentation are created for different development stages of the configuration system. A base data model already existed for new structures and relations between these structures. This model was used as the basis for the later data modeling work. Data models include different data structures, their key objects and attributes, and relations between. Representation of configuration rules for the to-be configuration system was defined as one of the key focus point. Further, it is examined how the customer needs and requirements information can be integrated into the product development process. Requirements hierarchy and classification system is presented. It is shown how individual requirement specifications can be connected for physical design structure via features by developing the existing base data model further.
Resumo:
The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.
Resumo:
In this article, a methodology is used for the simultaneous determination of the effective diffusivity and the convective mass transfer coefficient in porous solids, which can be considered as an infinite cylinder during drying. Two models are used for optimization and drying simulation: model 1 (constant volume and diffusivity, with equilibrium boundary condition), and model 2 (constant volume and diffusivity with convective boundary condition). Optimization algorithms based on the inverse method were coupled to the analytical solutions, and these solutions can be adjusted to experimental data of the drying kinetics. An application of optimization methodology was made to describe the drying kinetics of whole bananas, using experimental data available in the literature. The statistical indicators enable to affirm that the solution of diffusion equation with convective boundary condition generates results superior than those with the equilibrium boundary condition.
Resumo:
ABSTRACT Roasting is one of the most complex coffee processing steps due to simultaneous transfers of heat and mass. During this process, beans lose mass because of fast physical and chemical changes that will set color and flavor of the commercial coffee beverage. Therefore, we aimed at assessing the kinetics of mass loss in commercially roasted coffee beans according to heating throughout the processing. For that, we used samples of 350-g Arabica coffee processed grains with water content of 0.1217 kga kg-1, in addition to a continuous roaster with firing gas. The roaster had initial temperatures of 285, 325, 345 and 380 °C, decreasing during the process up to 255, 285, 305 and 335 °C respectively. Mass loss was calculated by the difference between grain weight before and after roasting. We observed a linear variation directly dependent on roaster temperature. For each temperature during the process was obtained a constant mass loss rate, which was reported by the Arrhenius model with r2 above 0.98. In a roaster in non-isothermal conditions, the required activation energy to start the mass loss in a commercial coffee roasting index was 52.27 kJ mol -1.
Resumo:
The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.