975 resultados para mass reduction
Resumo:
With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).
Resumo:
Tungro is one of the most destructive viral diseases of rice in South and Southeast Asia. It is associated with two viruses---rice tungro bacilliform virus (RTBV) ,and rice tungro spherical virus (RTSV) (Hibino et al 1978). Both viruses are transmitted by the green leafhopper (GLH) Nephotettix virescens (Ling 1979), However, prior acquisition of RTSV is required for Ihe transmission of RTBV alone (Hibino 1983). Plants infected with both viruses show severe stunting and yellowing. Those infected with RTBV alone show mild stunting but no leaf discoloration whereas those infected with RTSV alone do not show any apparent symptoms (Hibino el al 1978). Since the late 1960s, tungro has been mainly managed through varietal resistance (Khush 1989). The instability of resistant varieties in the field (Dahal et .a1 1990) led to a reexamination of the nature of the incorporated sources of resistance and to the adoption of more precise and more accurate screening methods.
Resumo:
As a result of a broad invitation extended by Professor Martin Betts, Executive Dean of the Faculty of Built Environment and Engineering, to the community of interest at QUT, a cross-disciplinary collaborative workshop was conducted to contribute ideas about responding to the Government of India’s urgent requirement to implement a program to re-house slum dwellers. This is a complex problem facing the Indian Ministry of Housing. Not only does the government aspire to eradicate existing slum conditions and to achieve tangible results within five years, but it must also ensure that slums do not form in the future. The workshop focused on technological innovation in construction to deliver transformation from the current unsanitary and overcrowded informal urban settlements to places that provide the economically weaker sections of Indian society with healthy, environmentally sustainable, economically viable mass housing that supports successful urban living. The workshop was conducted in two part process as follows: Initially, QUT academics from diverse fields shared current research and provided technical background to contextualise the challenge at a pre-workshop briefing session. This was followed by a one-day workshop during which participants worked intensively in multi-disciplinary groups through a series of exercises to develop innovative approaches to the complex problem of slum redevelopment. Dynamic, compressed work sessions, interspersed with cross-functional review and feedback by the whole group took place throughout the day. Reviews emphasised testing the concepts for their level of complexity, and likelihood of success. The two-stage workshop process achieved several objectives: Inspired a sense of shared purpose amongst a diverse group of academics Built participants’ knowledge of each other’s capacity Engaged multi disciplinary team in an innovative design research process Built participants’ confidence in the collaborative process Demonstrated that collaborative problem solving can create solutions that represent transformative change. Developed a framework of how workable solutions might be developed for the program through follow up workshops and charrettes of a similar nature involving stakeholders drawn from the context of the slum housing program management.
Resumo:
Shedding light: Nitroaromatic compounds on gold nanoparticles (3 wt %) supported on ZrO2 can be reduced directly to the corresponding azo compounds when illuminated with visible light or ultraviolet light at 40 °C (see picture). The process occurs with high selectivity and at ambient temperature and pressure, and enables the selection of intermediates that are unstable in thermal reactions.
Resumo:
Research has demonstrated that driving a vehicle for work is potentially one of the most dangerous workplace activities. Although organisations are required to meet legislative obligations under workplace health and safety in relation to work related vehicle use, organisations are often reluctant to acknowledge and address the risks associated with the vehicle as a workplace. Recent research undertaken investigating the challenges associated with driver and organisational aspects of fleet safety are discussed. This paper provides a risk management framework to assist organisations to meet legislative requirements and reduce the risk associated with vehicle use in the workplace. In addition the paper argues that organisations need to develop and maintain a positive fleet safety culture to proactively mitigate risk in an effort to reduce the frequency and severity of vehicle related incidents within the workplace.
Resumo:
As the need for concepts such as cancellation and OR-joins occurs naturally in business scenarios, comprehensive support in a workflow language is desirable. However, there is a clear trade-off between the expressive power of a language (i.e., introducing complex constructs such as cancellation and OR-joins) and ease of verification. When a workflow contains a large number of tasks and involves complex control flow dependencies, verification can take too much time or it may even be impossible. There are a number of different approaches to deal with this complexity. Reducing the size of the workflow, while preserving its essential properties with respect to a particular analysis problem, is one such approach. In this paper, we present a set of reduction rules for workflows with cancellation regions and OR-joins and demonstrate how they can be used to improve the efficiency of verification. Our results are presented in the context of the YAWL workflow language.
Resumo:
Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being enabled if the place contains one or more tokens. While reset/inhibitor nets increase the expressive power of Petri nets, they also result in increased complexity of analysis techniques. One way of speeding up Petri net analysis is to apply reduction rules. Unfortunately, many of the rules defined for classical Petri nets do not hold in the presence of reset and/or inhibitor arcs. Moreover, new rules can be added. This is the first paper systematically presenting a comprehensive set of reduction rules for reset/inhibitor nets. These rules are liveness and boundedness preserving and are able to dramatically reduce models and their state spaces. It can be observed that most of the modeling languages used in practice have features related to cancellation and blocking. Therefore, this work is highly relevant for all kinds of application areas where analysis is currently intractable.
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.