966 resultados para low temperature analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Young trees of two carobs (Ceratonia siliqua L.) cultivars, Mulata and Galhosa, ,propagated in vitro and grown for 3-4 years in a greenhouse were moved into a growth chamber under environmental controlled conditions where they were exposed to 25/15º C (control), 10/5º C (chilling) and again to 25/15º C (recovery).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical processes by chemoautotrophs such as nitrifiers and sulfide and iron oxidizers are used extensively in wastewater treatment. The research described in this dissertation involved the study of two selected biological processes utilized in wastewater treatment mediated by chemoautotrophic bacteria: nitrification (biological removal of ammonia and nitrogen) and hydrogen sulfide (H2S) removal from odorous air using biofiltration. A municipal wastewater treatment plant (WWTP) receiving industrial dyeing discharge containing the azo dye, acid black 1 (AB1) failed to meet discharge limits, especially during the winter. Dyeing discharge mixed with domestic sewage was fed to sequencing batch reactors at 22oC and 7oC. Complete nitrification failure occurred at 7oC with more rapid nitrification failure as the dye concentration increased; slight nitrification inhibition occurred at 22oC. Dye-bearing wastewater reduced chemical oxygen demand (COD) removal at 7oC and 22oC, increased i effluent total suspended solids (TSS) at 7oC, and reduced activated sludge quality at 7oC. Decreasing AB1 loading resulted in partial nitrification recovery. Eliminating the dye-bearing discharge to the full-scale WWTP led to improved performance bringing the WWTP into regulatory compliance. BiofilterTM, a dynamic model describing the biofiltration processes for hydrogen sulfide removal from odorous air emissions, was calibrated and validated using pilot- and full-scale biofilter data. In addition, the model predicted the trend of the measured data under field conditions of changing input concentration and low effluent concentrations. The model demonstrated that increasing gas residence time and temperature and decreasing influent concentration decreases effluent concentration. Model simulations also showed that longer residence times are required to treat loading spikes. BiofilterTM was also used in the preliminary design of a full-scale biofilter for the removal of H2S from odorous air. Model simulations illustrated that plots of effluent concentration as a function of residence time or bed area were useful to characterize and design biofilters. Also, decreasing temperature significantly increased the effluent concentration. Model simulations showed that at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innovation in several industrial sectors has been recently characterized by the need for reducing the operative temperature either for economic or environmental related aspects. Promising technological solutions require the acquisition of fundamental-based knowledge to produce safe and robust systems. In this sense, reactive systems often represent the bottleneck. For these reasons, this work was focused on the integration of chemical (i.e., detailed kinetic mechanism) and physical (i.e., computational fluid dynamics) models. A theoretical-based kinetic mechanism mimicking the behaviour of oxygenated fuels and their intermediates under oxidative conditions in a wide range of temperature and pressure was developed. Its validity was tested against experimental data collected in this work by using the heat flux burner, as well as measurements retrieved from the current literature. Besides, estimations deriving from existing models considered as the benchmark in the combustion field were compared with the newly generated mechanism. The latter was found to be the most accurate for the investigated conditions and fuels. Most influential species and reactions on the combustion of butyl acetate were identified. The corresponding thermodynamic parameter and rate coefficients were quantified through ab initio calculations. A reduced detailed kinetic mechanism was produced and implemented in an open-source computational fluid dynamics model to characterize pool fires caused by the accidental release of aviation fuel and liquefied natural gas, at first. Eventually, partial oxidation processes involving light alkenes were optimized following the quick, fair, and smoot (QFS) paradigm. The proposed procedure represents a comprehensive and multidisciplinary approach for the construction and validation of accurate models, allowing for the characterization of developing industrial sectors and techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkoxy-N-methyl-acetiminium salts were prepared by addition of CH3OH and C2H5OH to N-methyl acetonitrilium fluorosulfonate at low temperature. Analysis of the (5)J(HH) and (3)J(13)C-H coupling constants in the NMR spectra showed an anti addition with a diastereoselectivity of >9596. Deprotonation of these salts with (Z)-configuration gave the corresponding N-methyl-alkoxyacetimines with very high (E)-configuration. Upon protonation at -78 degrees C, these iminoesters gave the corresponding alkoxy-N-methyl-acetirninium salts with (E)-configuration. Computational analyses of the iminoesters and the corresponding iminium cations including the conformations give insight into the relative stability. Nitrilium salts can be used as reagents, exemplified by some esterifications between simple acids and alcohols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of Embedded Image (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly -2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81 in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria are generally difficult specimens to prepare for conventional resin section electron microscopy and mycobacteria, with their thick and complex cell envelope layers being especially prone to artefacts. Here we made a systematic comparison of different methods for preparing Mycobacterium smegmatis for thin section electron microscopy analysis. These methods were: (1) conventional preparation by fixatives and epoxy resins at ambient temperature. (2) Tokuyasu cryo-section of chemically fixed bacteria. (3) rapid freezing followed by freeze substitution and embedding in epoxy resin at room temperature or (4) combined with Lowicryl HM20 embedding and ultraviolet (UV) polymerization at low temperature and (5) CEMOVIS, or cryo electron microscopy of vitreous sections. The best preservation of bacteria was obtained with the cryo electron microscopy of vitreous sections method, as expected, especially with respect to the preservation of the cell envelope and lipid bodies. By comparison with cryo electron microscopy of vitreous sections both the conventional and Tokuyasu methods produced different, undesirable artefacts. The two different types of freeze-substitution protocols showed variable preservation of the cell envelope but gave acceptable preservation of the cytoplasm, but not lipid bodies, and bacterial DNA. In conclusion although cryo electron microscopy of vitreous sections must be considered the 'gold standard' among sectioning methods for electron microscopy, because it avoids solvents and stains, the use of optimally prepared freeze substitution also offers some advantages for ultrastructural analysis of bacteria.