989 resultados para livestock organic
Resumo:
Background: Hemolytic-uremic syndrome (HUS) is a multisystem disorder associated with significant morbidity and mortality. Typically, HUS is preceded by an episode of (bloody) diarrhea mostly due to Shiga-toxin (Stx) producing Escherichia coli (STEC). The main reservoir for STEC is the intestine of healthy ruminants, mostly cattle, and recent studies have revealed an association between indicators of livestock density and human STEC infection or HUS, respectively. Nationwide data on HUS in Switzerland have been established through the Swiss Pediatric Surveillance Unit (SPSU) [Schifferli et al. Eur J Pediatr. 2010; 169:591-8]. Aims: Analysis of age-specific incidence rate of childhood HUS and possible association of Shiga-toxin associated HUS (Stx-HUS) with indicators of livestock farming intensity. Methods: Epidemiological and ecological analysis based on the SPSU data (1997-2003) and the database of the Swiss Federal Statistical Office (data on population and agriculture). Results: One hundred-fourteen cases were registered, 88% were ≤5 years old. The overall annual incidence rate was 1.42 (0.60-1.91) and 4.23 (1.76-6.19) per 100000 children ≤5 and ≤16 years, respectively (P = 0.005). Stx-HUS was more frequent compared to cases not associated with STEC (P = 0.002). The incidence rate for Stx-HUS was 3.85 (1.76-5.65) in children ≤5, compared to 0.27 (0.00-0.54) per 100'000 children 5-16 years (P = 0.002), respectively. The incidence rate of cases not associated with STEC infection did not significantly vary with age (P = 0.107). Compared to data from Scotland, Canada, Ireland, Germany, England, Australia, Italy, and Austria the annual incidence rate of HUS in young children is highest in Switzerland. Ecological analysis revealed strong association between the incidence rate of Stx-HUS and indicators of rural occupation (agricultural labourer / population, P = 0.030), farming intensity (livestock breeding farms / population, P = 0.027) and cattle density (cattle / cultivated area, P = 0.013). Conclusions: Alike in other countries, HUS in Switzerland is mostly associated with STEC infection and affects predominantly young children. However, the incidence rate is higher compared to countries abroad and is significantly correlated with indicators of livestock farming intensity. The present data support the impact of direct and indirect contact with animals or fecal contaminants in transmission of STEC to humans.
Resumo:
Farm/Livestock Management Demonstration Program produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Farm/Livestock Management Demonstration Program produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Farm/Livestock Management Demonstration Program produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
The Ljubija siderite deposits, hosted by a Carboniferous sedimentary complex within the Inner Dinarides, occur as stratabound replacement-type ore bodies in limestone blocks and as siderite-sulfides veins in shale. Three principal types of ore textures have been recognized including massive dark siderite and ankerite, siderite with zebra texture, and siderite veins. The ore and host rocks have been investigated by a combination of inorganic (major, trace, and rare earth element concentrations), organic (characterization of hydrocarbons including biomarkers), and stable isotope geochemical methods (isotope ratios of carbonates, sulfides, sulfates, kerogen, and individual hydrocarbons). New results indicate a marine origin of the host carbonates and a hydrothermal-metasomatic origin of the Fe mineralization. The differences in ore textures (e.g., massive siderite, zebra siderite) are attributed to physicochemical variations (e.g., changes in acidity, temperature, and/or salinity) of the mineralizing fluids and to the succession and intensity of replacement of host limestone. Vein siderite was formed by precipitation from hydrothermal fluids in the late stage of mineralization. The equilibrium fractionation of stable isotopes reveals higher formation temperatures for zebra siderites (around 245A degrees C) then for siderite vein (around 185A degrees C). Sulfur isotope ratios suggest Permian seawater or Permian evaporites as the main sulfur source. Fluid inclusion composition confirms a contribution of the Permian seawater to the mineralizing fluids and accord with a Permian mineralization age. Organic geochemistry data reflect mixing of hydrocarbons at the ore site and support the hydrothermal-metasomatic origin of the Ljubija iron deposits.
Resumo:
Infectious livestock disease creates externalities for proximate animal production enterprises. The distribution of production scale within a region should influence and be influenced by these disease externalities. Taking the distribution of the unit costs of stocking an animal as primitive, we show that an increase in the variance of these unit costs reduces consumer surplus. The effect on producer surplus, total surplus, and animal concentration across feedlots depends on the demand elasticity. A subsidy to smaller herds can reduce social welfare and immiserize the farm sector by increasing the extent of disease. While Nash behavior involves excessive stocking, disease effects can be such that aggregate output declines relative to first-best. Disease externalities can induce more adoption of a cost-reducing technology by larger herds so that animals become more concentrated across herds. For strategic reasons, excess overall adoption of the innovation may occur. Larger herds are also more likely to adopt biosecurity innovations, explaining why larger herds may be less diseased in equilibrium.
Resumo:
Organic producers have limited methods of avoiding plant diseases that result in cosmetic damage to produce. Therefore, the appearance of organic produce is often less than perfect. We use an experimental auction to investigate how cosmetic damage affects consumers’ willingness to pay for organic apples. We find that 75% of the participants are willing to pay more for organic than for conventional apples given identical appearance. However, at the first sight of any imperfection in the appearance of the organic apples, this segment is significantly reduced. Furthermore, we find that there is a significant effect of interaction between cosmetic damage and product methods. Even though most consumers say they buy organic products to avoid pesticides, we find that cosmetic damage has a larger impact on the willingness to pay for organic apples than for conventional apples.
Resumo:
The ongoing growth of corn-based ethanol production raises some fundamental questions about what impact continued growth will have on U.S. and world agriculture. Estimates of the long-run potential for ethanol production can be made by calculating the corn price at which the incentive to expand ethanol production disappears. Under current ethanol tax policy, if the prices of crude oil, natural gas, and distillers grains stay at current levels, then the break-even corn price is $4.05 per bushel. A multi-commodity, multi country system of integrated commodity models is used to estimate the impacts if we ever get to $4.05 corn. At this price, corn-based ethanol production would reach 31.5 billion gallons per year, or about 20% of projected U.S. fuel consumption in 2015. Supporting this level of production would require 95.6 million acres of corn to be planted. Total corn production would be approximately 15.6 billion bushels, compared to 11.0 billion bushels today. Most of the additional corn acres come from reduced soybean acreage. Wheat markets would adjust to fulfill increased demand for feed wheat. Corn exports and production of pork and poultry would all be reduced in response to higher corn prices and increased utilization of corn by ethanol plants. These results should not be viewed as a prediction of what will eventually materialize. Rather, they indicate a logical end point to the current incentives to invest in corn-based ethanol plants.
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship, this information is all about Iowa growers, what is new, what is going on around Iowa for growing.
Resumo:
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.
Resumo:
Faced with recurrent drought and famine during five centuries of human occupation, the small and densely populated Cape Verde Islands have a history of severe environmental problems. The arid climate and steep, rocky terrain provide scant resources for traditional subsistance farming under the best conditions, and in years of low rainfall the failure of rainfed crops causes massive food shortages. Agricultural use of steep slopes where rainfall is highest has led to soil erosion, as has removal of the island's vegetation for fuel and livestock. Pressure on the vegetation is particularly severe in dry years. International aid can provide relief from famine, and the introduction of modern agricultural and conservation techniques can improve the land and increase yield, but it is unlikely that Cape Verde can ever be entirely self -sufficient in food. Ultimately, the solution of Cape Verde's economic and environmental problems will probably require the development of productive urban jobs so the population can shift away from the intensive and destructive use of land for subsistance farming. In the meantime, the people of Cape Verde can best be served by instituting fundamental measures to conserve and restore the land so that it can be used to its fullest potential. The primary environmental problems in Cape Verde today are: 1. Soil degradation. Encouraged by brief but heavy rains and steep slopes, soil erosion is made worse by lack of vegetation. Soils are also low in organic matter due to the practice of completely removing crop plants and natural vegetation for food, fuel or livestock feed. 2. Water shortage. Brief and erratic rainfall in combination with rapid runoff makes surface water scarce and difficult to use. Groundwater supplies can be better developed but capabilities are poorly known and the complex nature of the geological substrate makes estimation difficult. Water is the critical limiting factor to the agricultural capability of the islands. 3. Fuel shortage. Demand for fuel is intense and has resulted in the virtual elimination of native vegetation. Fuelwood supplies are becoming more and more scarce and costly. Development of managed fuelwood plantations and alternate energy sources is required. 4. Inappropriate land use. Much of the land now used for raising crops or livestock is too steep or too arid for these purposes, causing erosion and destruction of vegetation. Improving yield in more appropriate areas and encouraging less damaging uses of the remaining marginal lands can help to alleviate this problem.
Resumo:
Analiza la cantidad de carbon organico y nitrogeno en las costas del norte del Perú en noviembre de 1977
Resumo:
Calcium carbonate nanofibres are found in numerous terrestrial environments, often associated with needle fibre calcite. This study attempts to mimic the natural system and generate comparable crystalline structures. A comparison of natural and synthesized nanofibre structures, using HRTEM as well as electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), has demonstrated that this type of nanocrystal can result from precipitation on organic templates, most likely cellulose nanofibres. This study emphasizes the fundamental role of organic templates in the precipitation of calcium carbonate in vadose environments, even at the nanoscale.