931 resultados para liquid flow monitoring


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a highly sensitive liquid bubble manometer which can measure low differential heads to an accuracy of 0.01 mm of water is reported in this paper. The liquid bubble consists of two miscible liquids,benzaldehyde and normal hexane (each of which is immiscible in water) in such a proportion that the bubble density is within ±2 % of the density of water. The movement of the liquid bubble, which occupies the full cross-sectional area of the glass tube containing water in the manometer, is indicative of the applied differential head to a magnified scale. The manometer is found to give excellent results in open channel flow and is recommended for use for differential heads up to 2 cm of water. The manometer is economical, simple in fabrication and with simple modifications the sensitivity of the manometer can be increased to more than 0.01 mm of water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wastewater analysis was used to examine prevalence and temporal trends in the use of two cathinones, methylone and mephedrone, in an urban population (>200,000 people) in South East Queensland, Australia. Wastewater samples were collected from the inlet of the sewage treatment plant that serviced the catchment from 2011 to 2013. Liquid chromatography coupled with tandem mass spectrometry was used to measure mephedrone and methylone in wastewater sample using direct injection mode. Mephedrone was not detected in any samples while methylone was detected in 45% of the samples. Daily mass loads of methylone were normalized to the population and used to evaluate methylone use in the catchment. Methylone mass loads peaked in 2012 but there was no clear temporal trend over the monitoring period. The prevalence of methylone use in the catchment was associated with the use of MDMA, the more popular analogue of methylone, as indicated by other complementary sources. Methylone use was stable in the study catchment during the monitoring period whereas mephedrone use has been declining after its peak in 2010. More research is needed on the pharmacokinetics of emerging illicit drugs to improve the applicability of wastewater analysis in monitoring their use in the population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetaminophen (paracetamol) is available in a wide range of oral formulations designed to meet the needs of the population across the age-spectrum, but for people with impaired swallowing, i.e. dysphagia, both solid and liquid medications can be difficult to swallow without modification. The effect of a commercial polysaccharide thickener, designed to be added to fluids to promote safe swallowing by dysphagic patients, on rheology and acetaminophen dissolution was tested using crushed immediate-release tablets in water, effervescent tablets in water, elixir and suspension. The inclusion of the thickener, comprised of xanthan gum and maltodextrin, had a considerable impact on dissolution; acetaminophen release from modified medications reached 12-50% in 30 minutes, which did not reflect the pharmacopeia specification for immediate release preparations. Flow curves reflect the high zero-shear viscosity and the apparent yield stress of the thickened products. The weak gel nature, in combination with high G’ values compared to G” (viscoelasticity) and high apparent yield stress, impact drug release. The restriction on drug release from these formulations is not influenced by the theoretical state of the drug (dissolved or dispersed), and the approach typically used in clinical practice (mixing crushed tablets into pre-prepared thickened fluid) cannot be improved by altering the order of incorporation or mixing method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this study is to evaluate selected geophysical, structural and topographic methods on regional, local, and tunnel and borehole scales, as indicators of the properties of fracture zones or fractures relevant to groundwater flow. Such information serves, for example, groundwater exploration and prediction of the risk of groundwater inflow in underground construction. This study aims to address how the features detected by these methods link to groundwater flow in qualitative and semi-quantitative terms and how well the methods reveal properties of fracturing affecting groundwater flow in the studied sites. The investigated areas are: (1) the Päijänne Tunnel for water-conveyance whose study serves as a verification of structures identified on regional and local scales; (2) the Oitti fuel spill site, to telescope across scales and compare geometries of structural assessment; and (3) Leppävirta, where fracturing and hydrogeological environment have been studied on the scale of a drilled well. The methods applied in this study include: the interpretation of lineaments from topographic data and their comparison with aeromagnetic data; the analysis of geological structures mapped in the Päijänne Tunnel; borehole video surveying; groundwater inflow measurements; groundwater level observations; and information on the tunnel s deterioration as demonstrated by block falls. The study combined geological and geotechnical information on relevant factors governing groundwater inflow into a tunnel and indicators of fracturing, as well as environmental datasets as overlays for spatial analysis using GIS. Geophysical borehole logging and fluid logging were used in Leppävirta to compare the responses of different methods to fracturing and other geological features on the scale of a drilled well. Results from some of the geophysical measurements of boreholes were affected by the large diameter (gamma radiation) or uneven surface (caliper) of these structures. However, different anomalies indicating more fractured upper part of the bedrock traversed by well HN4 in Leppävirta suggest that several methods can be used for detecting fracturing. Fracture trends appear to align similarly on different scales in the zone of the Päijänne Tunnel. For example, similarities of patterns were found between the regional magnetic trends, correlating with orientations of topographic lineaments interpreted as expressions of fracture zones. The same structural orientations as those of the larger structures on local or regional scales were observed in the tunnel, even though a match could not be made in every case. The size and orientation of the observation space (patch of terrain at the surface, tunnel section, or borehole), the characterization method, with its typical sensitivity, and the characteristics of the location, influence the identification of the fracture pattern. Through due consideration of the influence of the sampling geometry and by utilizing complementary fracture characterization methods in tandem, some of the complexities of the relationship between fracturing and groundwater flow can be addressed. The flow connections demonstrated by the response of the groundwater level in monitoring wells to pressure decrease in the tunnel and the transport of MTBE through fractures in bedrock in Oitti, highlight the importance of protecting the tunnel water from a risk of contamination. In general, the largest values of drawdown occurred in monitoring wells closest to the tunnel and/or close to the topographically interpreted fracture zones. It seems that, to some degree, the rate of inflow shows a positive correlation with the level of reinforcement, as both are connected with the fracturing in the bedrock. The following geological features increased the vulnerability of tunnel sections to pollution, especially when several factors affected the same locations: (1) fractured bedrock, particularly with associated groundwater inflow; (2) thin or permeable overburden above fractured rock; (3) a hydraulically conductive layer underneath the surface soil; and (4) a relatively thin bedrock roof above the tunnel. The observed anisotropy of the geological media should ideally be taken into account in the assessment of vulnerability of tunnel sections and eventually for directing protective measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Paper deals with the analysis of liquid limit of soils, an inferential parameter of universal acceptance. It has been undertaken primarily to re-examine one-point methods of determination of liquid limit water contents. It has been shown by basic characteristics of soils and associated physico-chemical factors that critical shear strengths at liquid limit water contents arise out of force field equilibrium and are independent of soil type. This leads to the formation of a scientific base for liquid limit determination by one-point methods, which hitherto was formulated purely on statistical analysis of data. Available methods (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) of one-point liquid limit determination have been critically re-examined. A simple one-point cone penetrometer method of computing liquid limit has been suggested and compared with other methods. Experimental data of Sherwood & Ryley (1970) have been employed for comparison of different cone penetration methods. Results indicate that, apart from mere statistical considerations, one-point methods have a strong scientific base on the uniqueness of modified flow line irrespective of soil type. Normalized flow line is obtained by normalization of water contents by liquid limit values thereby nullifying the effects of surface areas and associated physico-chemical factors that are otherwise reflected in different responses at macrolevel.Cet article traite de l'analyse de la limite de liquidité des sols, paramètre déductif universellement accepté. Cette analyse a été entreprise en premier lieu pour ré-examiner les méthodes à un point destinées à la détermination de la teneur en eau à la limite de liquidité. Il a été démontré par les caractéristiques fondamentales de sols et par des facteurs physico-chimiques associés que les résistances critiques à la rupture au cisaillement pour des teneurs en eau à la limite de liquidité résultent de l'équilibre des champs de forces et sont indépendantes du type de sol concerné. On peut donc constituer une base scientifique pour la détermination de la limite de liquidité par des méthodes à un point lesquelles, jusqu'alors, n'avaient été formulées que sur la base d'une analyse statistique des données. Les méthodes dont on dispose (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) pour la détermination de la limite de liquidité à un point font l'objet d'un ré-examen critique. Une simple méthode d'analyse à un point à l'aide d'un pénétromètre à cône pour le calcul de la limite de liquidité a été suggérée et comparée à d'autres méthodes. Les données expérimentales de Sherwood & Ryley (1970) ont été utilisées en vue de comparer différentes méthodes de pénétration par cône. En plus de considérations d'ordre purement statistque, les résultats montrent que les méthodes de détermination à un point constituent une base scientifique solide en raison du caractère unique de la ligne de courant modifiée, quel que soit le type de sol La ligne de courant normalisée est obtenue par la normalisation de la teneur en eau en faisant appel à des valeurs de limite de liquidité pour, de cette manière, annuler les effets des surfaces et des facteurs physico-chimiques associés qui sans cela se manifesteraient dans les différentes réponses au niveau macro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlations of erosion resistances of materials tested in different equipment are reported. Analysis of the authors' data from rotating disk and venturi equipment indicates that there exists a good correlation between the erosion resistances of materials tested at different intensities. The study indicates that time effects on erosion are important in correlations of this type. The erosion resistances of materials tested in two different devices exhibit good correlations indicating a quantitative similarity between different forms of erosion. The investigations also show that the prediction of erosion resistances of materials in a field device may be made with the data from a laboratory device which may not fully reproduce the flow conditions in the field. These conclusions are also checked with data reported from other laboratories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow of single large liquid bubbles under gravity in closed tubes is studied here for the case when the liquid bubble exhibits micropolar behaviour. The film thickness, velocity profile in the bubble and film, and nonNewtonian effects are studied and compared with those for the correspondingNewtonian fluid. The investigation is restricted to the case where the bubble length is far greater than the tube radius.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient natural convection flow on a heated cylinder buried in a semi-infinite liquid-saturated porous medium has been studied. The unsteadiness in the problem arises due to the cylinder which is heated (cooled) suddenly and then maintained at that temperature. The coupled partial differential equations governing the flow and heat transfer are cast into stream function-temperature formulation, and the solutions are obtained from the initial time to the time when steady state is reached. The heat transfer is found to change significantly with increasing time in a small time interval immediately after the start of the impulsive change, and steady state is reached after some time. The average Nusselt number is found to increase with Rayleigh number When the surface of the cylinder is suddenly cooled, there is a change in the direction of the heat transfer in a small time interval immediately after the start of the impulsive change in the surface temperature;however when the surface temperature is suddenly increased, no such phenomenon is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Re-g. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Re-g and eventually develop shorter breakup lengths at higher values of Re-g. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Re-g. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Body Area Network (BAN) is an emerging technology that focuses on monitoring physiological data in, on and around the human body. BAN technology permits wearable and implanted sensors to collect vital data about the human body and transmit it to other nodes via low-energy communication. In this paper, we investigate interactions in terms of data flows between parties involved in BANs under four different scenarios targeting outdoor and indoor medical environments: hospital, home, emergency and open areas. Based on these scenarios, we identify data flow requirements between BAN elements such as sensors and control units (CUs) and parties involved in BANs such as the patient, doctors, nurses and relatives. Identified requirements are used to generate BAN data flow models. Petri Nets (PNs) are used as the formal modelling language. We check the validity of the models and compare them with the existing related work. Finally, using the models, we identify communication and security requirements based on the most common active and passive attack scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.