269 resultados para lichen
Resumo:
Three lichen species were wetted with distilled water at different frequencies during August 1973 to July 1974. The radial growth rates of Parmelia glabratula ssp. fuliginosa and Physcia orbicularis thalli declined with increased wetting while the radial growth rate of Parmelia conspersa thalli increased with wetting frequency until ten experimental wettings per month but at fifteen wettings per month fell to a value near to the control. In the summer months, wetting resulted in a decline in the radial growth of P. glabratula ssp fuliginosa compared with the control but had little influence on the growth of P. conspersa and Physcia orbicularis. In the winter months, wetting had no significant influence on the radial growth of Parmelia glabratula ssp. fuliginosa, while the radial growth of P. conspersa increased and Physcia orbicularis declined compared with controls. These results are interpreted physiologically and in relation to the aspect distribution of the three lichens on rock surfaces.
Resumo:
Progress in the field of lichen growth rates is briefly reviewed. The application of a new method of measuring growth rate to thalli of different size has led to the conclusion that there are changes in the radial growth rate during the life of a lichen thallus. For most of the life of a lichen thallus the radial growth rate is constant and the thallus radius increases linearly. Preceeding the linear phase the radial growth rate increases with time and the thallus radius increases logarithmically. There is no evidence for a postlinear phase in the radial growth of a lichen thallus. Studies on the growth rate of lichens are applied both to the problems of determining the age of a lichen thallus on an undated substratum and to an ecological investigation in the field.
Resumo:
Progress in the field of lichen growth rate studies is briefly reviewed. The application of a new method of measuring growth rate to thalli of different size has led to the conclusion that there are changes in the radial growth rate during the life of a lichen thallus. For most of the life of a lichen thallus the radial growth rate is constant and the thallus radius increases linearly. Preceding the linear phase the radial growth rate increases with time and the thallus radius increases logarithmically. There is no evidence for a postlinear phase in the radial growth of a lichen thallus. Studies on the growth rate of lichens are applied both to the problems of determining the age of a lichen thallus on an undated susbtratum and to an ecological investigation in the field.
Resumo:
An investigator may also wish to select a small subset of the X variables which give the best prediction of the Y variable. In this case, the question is how many variables should the regression equation include? One method would be to calculate the regression of Y on every subset of the X variables and choose the subset that gives the smallest mean square deviation from the regression. Most investigators, however, prefer to use a ‘stepwise multiple regression’ procedure. There are two forms of this analysis called the ‘step-up’ (or ‘forward’) method and the ‘step-down’ (or ‘backward’) method. This Statnote illustrates the use of stepwise multiple regression with reference to the scenario introduced in Statnote 24, viz., the influence of climatic variables on the growth of the crustose lichen Rhizocarpon geographicum (L.)DC.
Resumo:
This review considers various aspects of the growth of foliose lichens including early growth and development, variation in radial growth rate (RaGR) of different species, growth to maturity, lobe growth variation, senescence and fragmentation, growth models, the influence of environmental variables, and the maintenance of thallus symmetry. The data suggest that a foliose lichen thallus is essentially a ‘colony’ in which the individual lobes exhibit a considerable degree of autonomy in their growth processes. During development, recognisable juvenile thalli are usually formed by 15 months to 4 years while most mature thalli exhibit RaGR between 1 and 5 mm yr-1. RaGR within a species is highly variable. The growth rate-size curve of a foliose lichen thallus may result from growth processes that take place at the tips of individual lobes together with size-related changes in the intensity of competition for space between the marginal lobes. Radial growth and growth in mass is influenced by climatic and microclimatic factors and also by substratum factors such as rock and bark texture, chemistry, and nutrient enrichment. Possible future research topics include: (1) measuring fast growing foliose species through life, (2) the three dimensional changes that occur during lobe growth, (3) the cellular changes that occur during regeneration, growth, and division of lobes, and (4) the distribution and allocation of the major lichen carbohydrates within lobes.
Resumo:
The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.
Resumo:
Some species of crustose lichens, such as Ochrolechia parella (L.) Massal., exhibit concentric marginal rings, which may represent an alternative technique of measuring growth rates and potentially, a new lichenometric dating method. To examine this hypothesis, the agreement and correlation between ring widths and directly measured annual radial growth rates (RaGR, mm a-1) were studied in 24 thalli of O. parella in north Wales, UK, using digital photography and image analysis. Variation in ring width was observed at different locations around a thallus, between thalli, and from year to year. The best agreement and correlation between ring width and lichen growth rates was between mean width of the outer two rings (measured in 2011) and mean RaGR (in 2009/10). The O. parella data suggest that mean width of the youngest two growth rings, averaged over a sample of thalli, is a predictor of recent growth rates and therefore could be used in lichenometry. Potential applications include as a convenient method of comparing lichen growth rates on surfaces in different environmental settings; and as an alternative method of constructing lichen growth-rate curves, without having to revisit the same lichen thalli over many years. However, care is needed when using growth rings to estimate growth rates as: growth ring widths may not be stable; ring widths exhibit spatial and temporal variation; rings may not represent 1-year's growth in all thalli; and adjacent rings may not always represent successive year's growth.
Resumo:
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.
Resumo:
Usnea species of the Neuropogon group are amongst the most widespread and abundant macrolichens in Antarctic regions. Four principal species, U. antarctica, U. aurantiaco-atra, U. sphacelata and U. subantarctica, have been described on morphological grounds. However, identification to species level is often difficult and atypical morphologies frequently arise. Over 400 specimens were collected on the Antarctic Peninsula and Falkland Islands. Both morphological and molecular characters (ITS and RPB1) were used to compare samples to clarify taxonomic relationships. Morphological characteristics used included presence of apothecia, apothecial rays, soredia, papillae, fibrils, pigmentation and the diameter of the central axis as a proportion of branch diameter. Results revealed a very close relationship between U. antarctica and U. aurantiaco-atra, suggesting that they might constitute a species pair or be conspecific. Usnea sphacelata was comprised of at least two genetically distinct groups with no clear differences in morphology. One group included the first reported fertile specimen of this species. Usnea subantarctica was phylogenetically distinct from the other main Antarctic Usnea species, but clustered with U. trachycarpa. Genetic variation was evident within all species although there was no clear correlation between geographic origin and genetic relatedness. Phylogenetic analyses indicated that species circumscription in the Neuropogon group needs revision, with the principal species being non-monophyletic. None of the morphological characters, or groups of characters, used in this study proved to be completely unambiguous markers for a single species. However, axis thickness was supported as being informative for the identification of monophyletic lineages within the group.
Resumo:
Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.
Resumo:
Ao Médico Dentista cabe o diagnóstico e o tratamento de todas as perturbações que afetem a cavidade oral e estruturas anexas e, embora a cavidade oral seja uma zona de fácil visualização e acesso, as alterações que vão acontecendo passam muitas vezes despercebidas, ou não lhes é dado o devido valor fazendo com que, as patologias malignas sejam na maior parte das vezes, reconhecidas tardiamente não permitindo outro tipo de atuação senão paliativa. Uma das desordens que acontecem com recorrência é o Líquen Plano (LP). Tratando-se de uma patologia crónica, mucocutânea e autoimune, relativamente comum, que afeta maioritariamente as mulheres numa proporção de 3:2 para os homens, em idades compreendidas entre os 50 e 70 anos de vida. É uma dermatose caracterizada por ter potencial de recorrência, não sendo, contudo, contagiosa. O Líquen Plano poderá atingir a pele, couro cabeludo, unhas, mucosa genital e a cavidade oral. Na cavidade oral, designa-se como Líquen Plano Oral (LPO) e afeta a mucosa oral em 70% dos casos, sendo descrita pela Organização Mundial da Saúde (OMS), como sendo uma lesão prémaligna. Tendo em conta estes fatores, o objetivo deste trabalho é a análise da potencialidade de malignidade do LPO, uma vez que, existem distintas vertentes de entendimento e caracterização do mesmo. Para tal foi utilizada uma metodologia qualitativa de natureza bibliográfica com a aplicação de um conjunto de dados de pesquisa em websites, artigos de revistas e obras de índole cientifica, permitindo assim a realização de uma revisão bibliográfica.
Resumo:
Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas.
Resumo:
Arctic regions are expected to experience an increase in both temperature and precipitation over the coming decades, which is likely to impact vegetation dynamics and greenhouse gas exchange. To test this response, an experiment was installed at the Cape Bounty Arctic Watershed Observatory, on Melville Island, NU, in 2008 as part of the International Tundra Experiment (ITEX). Snow fences and open top chambers (OTCs) were used to manipulate snow depth and air temperature, respectively. Unlike most ITEX sites to date, enhanced temperature and snowfall were combined here in a factorial design with eight replicates. As an added control, four plots were established well outside the enhanced snow area. Senescence date was recorded at the end of the season, and at the peak of the growing season a vegetation survey was conducted within each plot in order to determine the total percent cover of each plot, as well as the percent cover of individual species. Carbon dioxide (CO2) exchange was also measured within each plot throughout the growing season. The date of senescence occurred significantly earlier in plots which had not been manipulated in any way, compared to all other treatments for all species. Salix arctica showed the greatest increase in cover over time at the species level. Lichen cover increased significantly in the deepened snow plots, and in general there were significant increases in percent cover in some functional groups over time. During June and into July the net CO2 flux was to the atmosphere. It was not until July 27 that these ecosystems became net carbon sinks. However, warming alone resulted in the ecosystem acting as a significant net carbon sink for the entire growing season. Plots exposed to warming alone were estimated to have removed approximately 19.94 g C m-2 from the atmosphere, whereas all other treatments were very similar to one another and estimated to have added approximately 3.12 g C m-2 to the atmosphere. Active layer depth and soil temperatures suggest that plots within the ambient snow zone may be receiving some additional snow due to their proximity to the fences. CO2 fluxes measured within the outer control plots suggest that the effect of warming alone could lead to this ecosystem being an even stronger net C sink under truly ambient snow conditions.