822 resultados para laser optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate passive mode-locking of a Raman fiber laser using a nanotube-based saturable absorber. The normal dispersion cavity generates highly-chirped 500 ps pulses that are compressed down to 2 ps, with 1.4 kW peak power. © 2011 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the exchange coupling theory was proposed by Kneller and Hawig in 1991 there has been a significant effort within the magnetic materials community to enhance the performance of rare earth magnets by utilising nano-composite meta-materials. Inclusions of magnetically soft iron smaller than approximately 10 nm in diameter are exchange coupled to a surrounding magnetically hard Nd2Fe14B matrix and provide an enhanced saturisation magnetisation without reducing coercivity. For such a fine nanostructure to be produced, close control over the thermal history of the material is needed. A processing route which provides this is laser annealing from an amorphous alloy precursor. In the current work, relationships between laser parameters, thermal histories of laser processed amorphous stoichiometric NdFeB ribbons and the magnetic properties of the resulting nanocrystalline products have been determined with a view to applying the process to thick film nanocomposite magnet production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability of manufacturing coatings is of central importance in engineering design. Many components require nowadays the application of additional layers, to enhance mechanical properties and protect against hostile environments. Supersonic Laser Deposition (SLD) is a novel coating method, based upon Cold Spray (CS) principles. In this technique the deposition velocities can be significantly lower than those required for effective bonding in CS applications. The addition of laser heat energy permits a change in the thermodynamic experience of impacting particles, thereby offering a greater opportunity for metallurgical bonding at lower velocities compared to the CS process technology. The work reported in this paper demonstrates the ability of the SLD process to deliver hard facing materials to engineering surfaces. Stellite-6 has been deposited on low carbon steel tubes over a range of process parameters, determining the appropriate target power and traverse speeds for coating deposition. Coating properties and parameters were examined to determine the main properties, micro-structure and processing cost. Their morphology was studied through optical microscopy, SEM and X-Ray Diffraction. The results have shown that SLD is capable of depositing Stellite-6, with enhanced properties compared to laser clad counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on the nanosecond fiber laser interaction with silicon was performed experimentally for the generation of percussion drilled holes. Single pulse ablation experiments were carried out on mono crystalline 650μm thick Si wafers. Changes of the mass removal mechanism were investigated by varying laser fluence up to 68 J/cm2 and pulse duration from 50 ns to 200 ns. Hole width and depth were measured and surface morphology were studied using scanning electron microscopy (SEM) and optical interferometric profilometry (Veeco NT3300). High speed photography was also used to examine laser generated plasma expansion rates. The material removal rate was found to be influenced by the pulse energy, full pulse duration and pulse peak power. Single pulse ablation depth of 4.42 μm was achieved using a 200 ns pulse of 13.3 J/cm 2, giving a maximum machining efficiency of 31.86 μm per mJ. Holes drilled with an increased fluence but fixed pulse length were deeper, exhibited low recast, but were less efficient than those produced at a lower fluence. The increased peak power in this case led to high levels of plasma and vapour production. The expansion of which, results in a strong driving recoil force, an increase in the rate and volume of melt ejection, and cleaner hole formation. The experimental findings show that for efficient drilling at a given energy, a longer, lower peak power pulse is more desirable than a high peak power short pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser beam diagnosis is usually carried out off-line in order to minimise the disruption to the process being carried out. This paper presents the results of a fractional sampling device for a high power beam diagnosis system capable of measuring in process beam properties such as beam diameter, intensity and beam position. The paper discusses the application of this sampling technique for monitoring beam properties during the laser materials processing operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser beam diagnosis is usually carried out off-line in order to minimise the disruption to the process being carried out. This paper presents the results of a fractional sampling device for a high power beam diagnosis system capable of measuring in process beam properties such as beam diameter, intensity and beam position. The paper discusses the application of this sampling technique for monitoring beam properties during the laser materials processing operation.