979 resultados para kirkwood superposition approximation
Resumo:
Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.
Resumo:
Since the 1980s, huge efforts have been made to utilise renewable energy sources to generate electric power. One of the interesting issues about embedded generators is the question of optimal placement and sizing of the embedded generators. This paper reports an investigation of impact of the integration of embedded generators on the overall performances of the distribution networks in the steady state, using theorem of superposition. Set of distribution system indices is proposed to observe performances of the distribution networks with embedded generators. Results obtained from the case study using IEEE test network are presented and discussed.
Resumo:
Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.
Resumo:
Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domínio da freqüência. Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões e instabilidades devido às ondas evanescentes e produz imagens com menos ruídos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também tem uma boa resposta para refletores com mergulhos íngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF), phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).
Resumo:
O método de empilhamento sísmico por Superfície de Reflexão Comum (ou empilhamento SRC) produz a simulação de seções com afastamento nulo (NA) a partir dos dados de cobertura múltipla. Para meios 2D, o operador de empilhamento SRC depende de três parâmetros que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0), o raio de curvatura da onda ponto de incidência normal (RNIP) e o raio de curvatura da onda normal (RN). O problema crucial para a implementação do método de empilhamento SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros ótimos associados a cada ponto de amostragem da seção AN a ser simulada. No presente trabalho foi desenvolvido uma nova sequência de processamento para a simulação de seções AN por meio do método de empilhamento SRC. Neste novo algoritmo, a determinação dos três parâmetros ótimos que definem o operador de empilhamento SRC é realizada em três etapas: na primeira etapa são estimados dois parâmetros (β°0 e R°NIP) por meio de uma busca global bidimensional nos dados de cobertura múltipla. Na segunda etapa é usado o valor de β°0 estimado para determinar-se o terceiro parâmetro (R°N) através de uma busca global unidimensional na seção AN resultante da primeira etapa. Em ambas etapas as buscas globais são realizadas aplicando o método de otimização Simulated Annealing (SA). Na terceira etapa são determinados os três parâmetros finais (β0, RNIP e RN) através uma busca local tridimensional aplicando o método de otimização Variable Metric (VM) nos dados de cobertura múltipla. Nesta última etapa é usado o trio de parâmetros (β°0, R°NIP, R°N) estimado nas duas etapas anteriores como aproximação inicial. Com o propósito de simular corretamente os eventos com mergulhos conflitantes, este novo algoritmo prevê a determinação de dois trios de parâmetros associados a pontos de amostragem da seção AN onde há intersecção de eventos. Em outras palavras, nos pontos da seção AN onde dois eventos sísmicos se cruzam são determinados dois trios de parâmetros SRC, os quais serão usados conjuntamente na simulação dos eventos com mergulhos conflitantes. Para avaliar a precisão e eficiência do novo algoritmo, este foi aplicado em dados sintéticos de dois modelos: um com interfaces contínuas e outro com uma interface descontinua. As seções AN simuladas têm elevada razão sinal-ruído e mostram uma clara definição dos eventos refletidos e difratados. A comparação das seções AN simuladas com as suas similares obtidas por modelamento direto mostra uma correta simulação de reflexões e difrações. Além disso, a comparação dos valores dos três parâmetros otimizados com os seus correspondentes valores exatos calculados por modelamento direto revela também um alto grau de precisão. Usando a aproximação hiperbólica dos tempos de trânsito, porém sob a condição de RNIP = RN, foi desenvolvido um novo algoritmo para a simulação de seções AN contendo predominantemente campos de ondas difratados. De forma similar ao algoritmo de empilhamento SRC, este algoritmo denominado empilhamento por Superfícies de Difração Comum (SDC) também usa os métodos de otimização SA e VM para determinar a dupla de parâmetros ótimos (β0, RNIP) que definem o melhor operador de empilhamento SDC. Na primeira etapa utiliza-se o método de otimização SA para determinar os parâmetros iniciais β°0 e R°NIP usando o operador de empilhamento com grande abertura. Na segunda etapa, usando os valores estimados de β°0 e R°NIP, são melhorados as estimativas do parâmetro RNIP por meio da aplicação do algoritmo VM na seção AN resultante da primeira etapa. Na terceira etapa são determinados os melhores valores de β°0 e R°NIP por meio da aplicação do algoritmo VM nos dados de cobertura múltipla. Vale salientar que a aparente repetição de processos tem como efeito a atenuação progressiva dos eventos refletidos. A aplicação do algoritmo de empilhamento SDC em dados sintéticos contendo campos de ondas refletidos e difratados, produz como resultado principal uma seção AN simulada contendo eventos difratados claramente definidos. Como uma aplicação direta deste resultado na interpretação de dados sísmicos, a migração pós-empilhamento em profundidade da seção AN simulada produz uma seção com a localização correta dos pontos difratores associados às descontinuidades do modelo.
Resumo:
O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.
Resumo:
Nesse trabalho, foram caracterizados, pela primeira vez, azulejos históricos portugueses do Centro Histórico de São Luís (CHSL) do Maranhão. A caracterização foi realizada através dos ensaios de microscopia ótica, difração de raios X (DRX) e análise química, visando ao uso dessa informação para a determinação das possíveis matérias-primas utilizadas na sua fabricação, bem como a provável temperatura de queima desses materiais. Os resultados mostraram que a microestrutura desses materiais é constituída por poros de tamanhos variados, apresentando incrustações de calcita e grãos de quartzo de tamanhos inferiores a 500 µm, distribuídos numa matriz de cor rosa-amarelo, onde foram identificadas, por DRX, as fases minerais calcita, gelhenita, wollastonita, quartzo e amorfo. A partir da informação obtida, é possível inferir que as matérias-primas originais estiveram constituídas, provavelmente, por mistura de argilas caoliníticas (Al2O3•2SiO,2•2H2O), ricas em carbonatos de cálcio e quartzo ou misturas de argilas caoliniticas, quartzo e calcita. Essas matérias-primas originais não atingiram a temperatura de cocção de 950ºC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A radial basis function network (RBFN) circuit for function approximation is presented. Simulation and experimental results show that the network has good approximation capabilities. The RBFN was a squared hyperbolic secant with three adjustable parameters amplitude, width and center. To test the network a sinusoidal and sine function,vas approximated.
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Resumo:
Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.
Resumo:
It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]
Resumo:
We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.
Resumo:
A charged particle is considered in a complex external electromagnetic field. The field is a superposition of an Aharonov-Bohm field and some additional field. Here we describe all additional fields known up to the present time that allow exact solution of the Schrodinger equation in a complex field.