992 resultados para interstitial cells of Cajal
Resumo:
Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.
Resumo:
Fine structure of vertical distributions of phosphorus and silicon in near-bottom layers and interstitial waters is studied in different regions of the Baltic Sea (Gulf of Finland, Bornholm area, Gotland trench). Data obtained are used to calculate fluxes of mineral forms of phosphorus and silicon in exchange processes between sediments and the near-bottom water layer. Depending on sediment types, values of nutrient fluxes vary from 9.8 to 632.6 µg-at/m**2/day for phosphorus and from 232.4 to 1881.1 µg-at/m**2/day for silicon. Fluxes calculated for different regions are compared.
Resumo:
In near-shore Pacific bottom sediments to the east of Japan unusually high content of free H2S ocurs. H2S resulting from bacterial reduction of sulfates from interstitial waters has a number of derivatives; pyrite dominates among them. Contents of other derivatives of H2S: sulfide sulfur and organic sulfur do not exceed 0,01%, content of organic sulfur does not exceed 0.1%. Due to reduction content of sulfates can reduce to 0,03% S. Capacity of the process of sulfate reduction, estimated by sum of all reduced forms of S - derivatives of H2S, is a function of organic matter content in sediments. Ability of bottom sediments to accumulate free H2S depends on content of reactive forms of Fe. Spatial distribution of reduced forms of S in the studied sediments is considered.
Resumo:
The landward part of the 7 km wide sabkha at Umm Said, SE Qatar, is filled with a stagnant brine virtually saturated with halite. Recent dolomite occurs in the sabkha sediments, the quantity being fully accounted for by the amount of Mg++ ions lost from the interstitial brine. The existence of a reflux system in the seaward parts of the sabkha was established. It was not, however, possible to gi ve any unequivocal demonstration of the effect of this potential system for dolomitization . Although both a reflux mechanism and Recent dolomite formation occur in this tidal flat, the first process has apparently not influenced the second sufficiently to permit the demonstration of reflux dolomitization.