929 resultados para inner circulating fluidized bed
Resumo:
An international study of fast pyrolysis of lignin was undertaken. Fourteen laboratories in eight different countries contributed. Two lignin samples were distributed to the laboratories for analysis and bench-scale process testing in fast pyrolysis. Analyses included proximate and ultimate analysis, thermogravimetric analysis, and analytical pyrolysis. The bench-scale test included bubbling fluidized-bed reactors and entrained-flow systems. Based on the results of the various analyses and tests it was concluded that a concentrated lignin (estimated at about 50% lignin and 50% cellulose) behaved like a typical biomass, producing a slightly reduced amount of a fairly typical bio-oil, while a purified lignin material was difficult to process in the fast pyrolysis reactors and produced a much lower amount of a different kind of bio-oil. It was concluded that for highly concentrated lignin feedstocks new reactor designs will be required other than the typical fluidized-bed fast pyrolysis systems.
Resumo:
Two sets of experiments, categorized as TG–FTIR and Py–GC–FTIR, are employed to investigate the mechanism of the hemicellulose pyrolysis and the formation of main gaseous and bio-oil products. The “sharp mass loss stage” and the corresponding evolution of the volatile products are examined by the TG–FTIR graphs at the heating rate of 3–80 K/min. A pyrolysis unit, composed of fluidized bed reactor, carbon filter, vapour condensing system and gas storage, is employed to investigate the products of the hemicellulose pyrolysis under different temperatures (400–690 °C) at the feeding flow rate of 600 l/h. The effects of temperature on the condensable products are examined thoroughly. The possible routes for the formation of the products are systematically proposed from the primary decomposition of the three types of unit (xylan, O-acetylxylan and 4-O-methylglucuronic acid) and the secondary reactions of the fragments. It is found that the formation of CO is enhanced with elevated temperature, while slight change is observed for the yield of CO2 which is the predominant products in the gaseous mixture.
Resumo:
The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.
Resumo:
The spreading time of liquid binder droplet on the surface a primary particle is analyzed for Fluidized Bed Melt Granulation (FBMG). As discussed in the first paper of this series (Chua et al., in press) the droplet spreading rate has been identified as one of the important parameters affecting the probability of particles aggregation in FBMG. In this paper, the binder droplet spreading time has been estimated using Computational Fluid Dynamic modeling (CFD) based on Volume of Fluid approach (VOF). A simplified analytical solution has been developed and tested to explore its validity for predicting the spreading time. For the purpose of models validation, the droplet spreading evolution was recorded using a high speed video camera. Based on the validated model, a generalized correlative equation for binder spreading time is proposed. For the operating conditions considered here, the spreading time for Polyethylene Glycol (PEG1500) binder was found to fall within the range of 10-2 to 10-5 s. The study also included a number of other common binders used in FBMG. The results obtained here will be further used in paper III, where the binder solidification rate is discussed.
Resumo:
In series I and II of this study ([Chua et al., 2010a] and [Chua et al., 2010b]), we discussed the time scale of granule–granule collision, droplet–granule collision and droplet spreading in Fluidized Bed Melt Granulation (FBMG). In this third one, we consider the rate at which binder solidifies. Simple analytical solution, based on classical formulation for conduction across a semi-infinite slab, was used to obtain a generalized equation for binder solidification time. A multi-physics simulation package (Comsol) was used to predict the binder solidification time for various operating conditions usually considered in FBMG. The simulation results were validated with experimental temperature data obtained with a high speed infrared camera during solidification of ‘macroscopic’ (mm scale) droplets. For the range of microscopic droplet size and operating conditions considered for a FBMG process, the binder solidification time was found to fall approximately between 10-3 and 10-1 s. This is the slowest compared to the other three major FBMG microscopic events discussed in this series (granule–granule collision, granule–droplet collision and droplet spreading).
Resumo:
The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.
Resumo:
The aim of this study is to characterise and compare fast pyrolysis product yields from straw, high yielding perennial grasses and hardwoods. Feedstocks selected for this study include: wheat straw (Triticum aestivum), switch grass (Panicum virgatum), miscanthus (Miscanthus x giganteus), willow short rotation coppice (Salix viminalis) and beech wood (Fagus sylvatica). The experimental work is divided into two sections: analytical (TGA and Py-GC-MS) and laboratory scale processing using a continuously fed bubbling fluidized bed reactor with a capacity of up to 1 kg/h. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been used to quantify pyrolysis products and simulate fast pyrolysis heating rates, in order to study potential key light and medium volatile decomposition products found in these feedstocks. Py-GC-MS quantification results show that the highest yields of furfural (0.57 wt.%), 2-furanmethanol (0.18 wt.%), levoglucosan (0.73 wt.%), 1,2-benzenediol (0.27 wt.%) and 2-methoxy-4-vinylphenol (0.38 wt.%) were found in switch grass, and that willow SRC produced the highest yield of phenol (0.33 wt.%). The bio-oil higher heating value was highest for switch grass (22.3 MJ/kg). Water content within the bio-oil is highest in the straw and perennial grasses and lowest in the hardwood willow SRC. The high bio-oil and char heating value and low water content found in willow SRC, makes this crop an attractive energy feedstock for fast pyrolysis processing, if the associated production costs and harvest yields can be maintained at current reported values. The bio-oil from switch grass has the highest potential for the production of high value chemicals. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.
Resumo:
The pyrolytic behaviour of individual component in biomass needs to be understood to gain insight into the mechanism of biomass pyrolysis. A comparative study on the pyrolysis of cellulose (hexose-based polysaccharides) and hemicallulose (pentose-based polysaccharides) is performed by two sets of experiments including TG analysis and Py-GC-MS/FTIR. The samples of these two polysaccharide components are thermally decomposed in TGA at the heating rate of 5 and 60 K/min to demonstrate the different characteristics of mass loss stage(s) between them. The yield of pyrolytic products is examined by a fluidized-bed fast pyrolysis unit. The experiment confirms that cellulose mainly contributes to bio-oil production (reaching the maximum of 72% at 580 °C), while hemicellulose works as an important precursor for the char production (∼25%). The compounds in the gaseous mixture (CO and CO2) and bio-oil (levoglucosan, furfural, aldehyde, acetone and acetic acid) are further characterized by GC-MS for cellulose and GC-FTIR for hemicellulose, and their formations are investigated thoroughly. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents the simulation of the pyrolysis vapors condensation process using an Eulerian approach. The condensable volatiles produced by the fast pyrolysis of biomass in a 100 g/h bubbling fluidized bed reactor are condensed in a water cooled condenser. The vapors enter the condenser at 500 °C, and the water temperature is 15 °C. The properties of the vapor phase are calculated according to the mole fraction of its individual compounds. The saturated vapor pressure is calculated for the vapor mixture using a corresponding states correlation and assuming that the mixture of the condensable compounds behave as a pure fluid. Fluent 6.3 has been used as the simulation platform, while the condensation model has been incorporated to the main code using an external user defined function. © 2011 American Chemical Society.
Resumo:
A novel simulation model for pyrolysis processes oflignocellulosicbiomassin AspenPlus (R) was presented at the BC&E 2013. Based on kinetic reaction mechanisms, the simulation calculates product compositions and yields depending on reactor conditions (temperature, residence time, flue gas flow rate) and feedstock composition (biochemical composition, atomic composition, ash and alkali metal content). The simulation model was found to show good correlation with existing publications. In order to further verify the model, own pyrolysis experiments in a 1 kg/h continuously fed fluidized bed fast pyrolysis reactor are performed. Two types of biomass with different characteristics are processed in order to evaluate the influence of the feedstock composition on the yields of the pyrolysis products and their composition. One wood and one straw-like feedstock are used due to their different characteristics. Furthermore, the temperature response of yields and product compositions is evaluated by varying the reactor temperature between 450 and 550 degrees C for one of the feedstocks. The yields of the pyrolysis products (gas, oil, char) are determined and their detailed composition is analysed. The experimental runs are reproduced with the corresponding reactor conditions in the AspenPlus model and the results compared with the experimental findings.
Resumo:
The viscosity of four aged bio-oil samples was measured experimentally at various shear rates and temperatures using a rotational viscometer. The experimental bio-oils were derived from fast pyrolysis of beech wood at 450, 500, and 550 °C and Miscanthus at 500 °C (in this work, they were named as BW1, BW2, BW3, and MXG) in a bubbling fluidized bed reactor. The viscosity of all bio-oils was kept constant at various shear rates at the same temperature, which indicated that they were Newtonian fluids. The viscosity of bio-oils was strongly dependent upon the temperature, and with the increase of the temperature from 30 to 80 °C, the viscosity of BW1, BW2, BW3, and MXG decreased by 90.7, 93.3, 92.6, and 90.2%, respectively. The Arrhenius viscosity model, which has been commonly used to represent the temperature dependence of the viscosity of many fluids, did not fit the viscosity-temperature experimental data of all bio-oils very well, especially in the low- and high-temperature regions. For comparison, the Williams-Landel-Ferry (WLF) model was also used. The results showed that the WLF model gave a very good description of the viscosity-temperature relationship of each bio-oil with very small residuals and the BW3 bio-oil had the strongest viscosity-temperature dependence.
Resumo:
Compared to the use of traditional fossil fuels (coal, oil, natural gas), combustion of biomass and waste fuels has several environmental and economic advantages for heat and power generation. However, biomass and waste fuels might contain halogens (Cl, Br, F), alkali metals (Na, K) and heavy metals (Zn, Pb), which may cause harmful emissions and corrosion problems. Hightemperature corrosion occurs typically on furnace waterwalls and superheaters. The corrosion of the boiler tube materials limits the increase of thermal efficiency of steam boilers and leads to costly shutdowns and repairs. In recent years, some concerns have been raised about halogen (Cl, Br, and F)-related hightemperature corrosion in biomass- and waste-fired boilers. Chlorine-related high-temperature corrosion has been studied extensively. The presence of alkali chlorides in the deposits is believed to play a major role in the corrosion observed in biomass and waste fired boilers. However, there is much less information found in literature on the corrosion effect of bromine and fluorine. According to the literature, bromine is only assumed to play a role similar to chlorine; the role of fluorine is even less understood. In this work, a series of bubbling fluidized bed (BFB) bench-scale tests were carried out to characterize the formation and sulfation behaviors of KCl and KBr in BFB combustion conditions. Furthermore, a series of laboratory tests were carried out to investigate the hightemperature corrosion behaviors of three different superheater steels (10CrMo9-10, AISI 347 and Sanicro 28) exposed to potassium halides in ambient air and wet air (containing 30% H2O). The influence of H2O and O2 on the high-temperature corrosion of steels both with and without a salt (KCl) in three gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2) was also studied. From the bench-scale BFB combustion tests, it was found that HBr has a clearly higher affinity for the available K forming KBr than HCl forming KCl. The tests also indicated that KCl has a higher tendency for sulfation than KBr. From the laboratory corrosion tests in ambient air (also called “dry air” in Paper III and Paper IV), it was found that at relatively low temperatures (≤ 550 °C) the corrosivity of KBr and KF are similar to KCl. At 600 °C, KF showed much stronger corrosivity than KBr and KCl, especially for 10CrMo9-10 and AISI 347. When exposed to KBr or KF, 10CrMo9-10 was durable at least up to 450 °C, while AISI 347 and Sanicro 28 were durable at least up to 550 °C. From the laboratory corrosion tests in wet air (30% H2O), no obvious effect of water vapor was detected at 450 °C. At 550 °C, the influence of water vapor became significant in some cases, but the trend was not consistent. At 550 °C, after exposure with KBr, 10CrMo9-10 suffered from extreme corrosion; after exposure with KF and KCl, the corrosion was less severe, but still high. At 550 °C, local deep pitting corrosion occurred on AISI 347 and Sanicro 28 after exposure with KF. Some formation of K2CrO4 was observed in the oxide layer. At 550 °C, AISI 347 and Sanicro 28 suffered from low corrosion (oxide layer thickness of < 10 μm) after exposure with KBr and KCl. No formation of K2CrO4 was observed. Internal oxidation occurred in the cases of AISI 347 with KBr and KCl. From the laboratory corrosion tests in three different gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2), it was found that in tests with no salt, no corrosion occurred on AISI 347 and Sanicro 28 up to 600 °C in both the “O2-rich” (2% H2O-30% O2-N2) and “H2O-rich” (30% H2O-2% O2-N2) gas atmospheres; only 10CrMo9-10 showed increased corrosion with increasing temperature. For 10CrMo9-10 in the “O2-rich” atmosphere, the presence of KCl significantly increased the corrosion compared to the “no salt” cases. For 10CrMo9-10 in the “H2O-rich” atmosphere, the presence or absence of KCl did not show any big influence on corrosion. The formation of K2CrO4 was observed only in the case with the “O2-rich” atmosphere. Considering both the results from the BFB tests and the laboratory corrosion tests, if fuels containing Br were to be combusted, the corrosion damage of superheaters would be expected to be higher than if the fuels contain only Cl. Information generated from these studies can be used to help the boiler manufacturers in selecting materials for the most demanding combustion systems.
Resumo:
Durante os últimos anos, a procura mundial de recursos energéticos renováveis tem sofrido um grande aumento. Neste grupo insere-se a biomassa, cuja conversão termoquímica, principalmente através de tecnologias de combustão e gasificação, é utilizada para a produção de energia térmica e elétrica. No processo de gasificação de biomassa é possível obter um combustível gasoso secundário com variadas aplicações, podendo inclusive servir como substituto do gás natural. No entanto, ao contrário da combustão, esta tecnologia aplicada à biomassa ainda está em fase de demonstração a nível industrial, apresentando algumas limitações em alguns aspetos tecnológicos, entre os quais a qualidade do gás produzido. Neste contexto, e com o objetivo de contribuir para o conhecimento da aplicabilidade desta tecnologia, surge o presente trabalho, onde a caracterização e definição das condições de operação de um gasificador de biomassa, bem como a caracterização do gás produzido foram objeto de estudo. Foi realizado um conjunto de experiências de gasificação direta, num reator de leito fluidizado borbulhante à escala piloto, com dois tipos de biomassa tipicamente encontrados em Portugal, e para diferentes condições de operação do gasificador, nomeadamente no que diz respeito à razão de equivalência. A biomassa utilizada consistiu em pellets comerciais de madeira e estilha de biomassa florestal residual derivada de pinheiro (Pinus pinaster), e resultante de operações florestais em Portugal. Na gama de temperatura do leito aplicada, tipicamente entre 800ºC e 875ºC, o reator funcionou em condições auto térmicas, isto é, sem a necessidade de recorrer a uma fonte de calor auxiliar externa. Em relação à composição do gás seco durante o processo de gasificação, os gases presentes em maior percentagem (em volume), para as experiências com ambos os tipos de biomassa, são o CO2 e o CO, com o primeiro a registar valores médios entre os 13.4% e os 16%, e o segundo entre 11.3% e 16.3%. Por ordem decrescente de concentração encontra-se o H2, na gama de 5.8% a 12.7%, o CH4 com valores médios entre 2.8% e 4.5%, e o C2H4 com concentrações médias entre 1.0% e 2.2%. Importa referir ainda a ausência de O2 no gás produzido. Verificou-se na concentração de H2, a principal diferença na composição do gás seco relativamente à gasificação dos dois combustíveis utilizados, com valores de concentração inferiores durante a operação com estilha de biomassa florestal residual derivada de pinheiro. Nas várias experiências realizadas, e para as condições operatórias utilizadas, observou-se que a razão de equivalência (RE) exerce um efeito significativo na composição do gás, verificando-se, genericamente, que com o aumento da RE a concentração de gases combustíveis diminui. Os valores de Poder Calorífico Inferior (PCI) obtidos para o gás seco produzido encontram-se na gama 3.4-5.6 MJ/Nm3, sendo que os valores mais elevados foram registados no decorrer dos ensaios de gasificação com pellets de madeira. Para ambos os combustíveis, o PCI do gás seco diminui com o aumento da RE.
Resumo:
A gasificação de biomassa permite a produção de um gás combustível com capacidade para reduzir o consumo de combustíveis fósseis. Contudo, para promover a utilização deste processo a nível industrial é necessário ultrapassar diversas limitações e elaborar tecnologias de gasificação que sejam mais rentáveis e eficientes. No presente trabalho efetuou-se a gasificação direta com ar, num reator auto-térmico com um leito fluidizado borbulhante, de diferentes tipos de biomassa provenientes da floresta portuguesa, nomeadamente pellets de madeira e diferentes tipos de biomassa florestal residual derivada de eucalipto. A investigação foi realizada numa instalação à escala piloto localizada no Departamento de Ambiente e Ordenamento da Universidade de Aveiro. A infraestrutura foi desenvolvida de modo a permitir o estudo do processo de gasificação de biomassa. O reator utilizado apresenta 3 metros de altura, consistindo a câmara de gasificação em 2.25 metros, 0.25 metros de diâmetro interno e uma potência entre 40 e 70 kWth. O leito é composto por areia (partículas com granulometria entre os 355 e 1000 µm) e tem uma altura de 0.23 m. A infraestrutura experimental oferece condições para efetuar a gasificação de biomassa, determinar a composição do gás produzido em termos de CO, CO2, H2, N2, CH4 e C2H4 e efetuar a sua combustão num queimador localizado a jusante do reator. O leito fluidizado operou com temperaturas médias entre os 700 e 850ºC. Para as razões de equivalência estabelecidas, entre 0.17 e 0.36, o gás seco apresentou uma composição que, em termos volumétricos e em função das condições operatórias, variou entre 14.0 a 21.4% CO, 14.2 a 17.5% CO2, 3.6 a 5.8% CH4, 1.3 a 2.4% C2H4, 2.0 a 10.2% H2 e 48.9 a 61.1% N2. A maior concentração de CO, CH4 e C2H4 foi observada durante a gasificação de biomassa residual florestal derivada de eucalipto com razão de equivalência de 0.17, contudo, a maior concentração de H2 foi obtida na gasificação de pellets de madeira com razão de equivalência de 0.25. Tendo em conta a composição gasosa, o poder calorífico inferior do gás seco encontrou-se entre 4.4 e 6.9 MJ/Nm3 e os valores mais elevados foram observados durante os processos de gasificação efetuados com menor razão de equivalência. A produção específica de gás variou entre 1.2 e 2.2 Nm3/kg biomassa bs, a eficiência do gás arrefecido entre 41.1 e 62.6% e a eficiência de conversão de carbono entre 60.0 e 87.5%, encontrando-se na gama dos valores reportados na literatura. A melhor condição, em termos da eficiência de gás arrefecido, consistiu na gasificação de biomassa residual florestal derivada de eucalipto com razão de equivalência de 0.25, e em termos da produção específica de gás seco e eficiência de conversão de carbono, na gasificação de biomassa residual florestal derivada de eucalipto com razão de equivalência de 0.35. Contudo, o gás com maior poder calorífico inferior foi obtido durante a gasificação de biomassa residual florestal derivada de eucalipto com razão de equivalência de 0.17. O reator demonstrou adequabilidade na gasificação de diferentes tipos de biomassa e foram observadas condições estáveis de operação, tanto em termos de temperatura como da composição do gás produzido. Geralmente, o gás apresentou propriedades combustíveis apropriadas para ser comburido de forma contínua e estável pelo queimador de gás, sem ser necessária uma fonte de ignição permanente ou a utilização de um combustível auxiliar.