870 resultados para inhomogeneous coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes the basic properties of ceramic materials for thermal barrier coatings. Ceramics, in contrast to metals, are often more resistant to oxidation, corrosion and wear, as well as being better thermal insulators. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of La2O3-ZrO2-CeO2 composite oxides were synthesized by solid-state reaction. The final product keeps fluorite structure when the molar ratio Ce/Zr >= 0.7/0.3, and below this ratio only mixtures of La2Zr2O7 (pyrochlore) and La2O3-CeO2 (fluorite) exist. Averagely speaking, the increase of CeO2 content gives rise to the increase of thermal expansion coefficient and the reduction of thermal conductivity, but La-2(Zr0.7Ce0.3)(2)O-7 has the lowest sintering ability and the lowest thermal conductivity which could be explained by the theory of phonon scattering. Based on the large thermal expansion coefficient of La2Ce3.25O9.5, the low thermal conductivities and low sintering abilities of La2Zr2O7 and La-2(Zr0.7Ce0.3)(2)O-7, double-ceramic-layer thermal barrier coatings were prepared. The thermal cycling tests indicate that such a design can largely improve the thermal cycling lives of the coatings. Since no single material that has been studied so far satisfies all the requirements for high temperature thermal barrier coatings, double-ceramic-layer coating may be an important development direction of thermal barrier coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y2O3 + ZrO2) and lanthanum zirconate (LZ, La2Zr2O7) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 degrees C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 mu m have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 mu m, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 mu m, the failure mainly occurs at the interface of the YSZ layer and the bond coat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dicyano-bis(1,10-phenanthroline)iron(II) modified elecrode was prepared. The voltammetric and the spectroelectrochemical behavior of this electrode were investigated. The influence of pH and the amount of Nafion and dicyano-bis(1,10-phenanthroline) iron(II) (DBPI) used in the electrode preparation on the electrochemical behavior is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A FeNiSiBV amorphous composite coating was developed by laser cladding of metallic powders on AISI 1020 low carbon steel substrate. The coatings were studied using X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The coating reveals different microstructures along the depth of the coating. The transition zone exhibits good metallurgical bonding between the substrate and the coating. The layer consists of amorphous phase in majority and nanocrystalline phase/crystalline phase in minority. Accompanied with the nanocrystalline phase, the amorphous phase is concentrated in the middle of the coating. The crystalline phase in the coating is identified as Fe2B. A gradient distribution of the microhardness ranges from 1208 HV0.2 to 891 HV0.2 in the coating along the depth. The coating shows higher microhardness and better wear property than the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spark discharge was the representative phenomenon of Micro-arc oxidation (MAO) method distinguished from other electrochemical oxidation methods. Under the spark discharge treatment, characteristics of the anodic layer were significantly changed. To investigate the influences of the spark discharge, a piece of magnesium alloy AZ91D specimen was partly treated by MAO method in alkaline silicate solution. And the microstructure, element distributions as well as the surface potential distributions of the specimen were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and scanning Kelvin probe (SKP) technique. As a result of intensive spark discharge treatment, porous external layer with dense internal layer were formed on Mg alloy surface. At the same time, the depositions of OH- and SiO32- ions were accelerated, which resulted in the enrichment of element oxygen and silicon at the spark discharge region. Moreover, due to the compact internal layer, the intensive spark discharge region exhibited more positive potentials with respect to other regions, which meant this region could restrain the ejection of electron and provide effective protection to the substrate. In addition, it was found that oxygen played a vital role in determining the intensity and size of sparks, and abundant oxygen resulted in intensive and larger sparks. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increasing applied voltage, three types of anodic coatings, passive film, micro-spark ceramic coating and spark ceramic coating were made by micro-arc oxidization (MAO) technique on AZ91D magnesium alloy in alkali-silicate solution. The structure, composition characteristics and the electrochemical properties of coatings were also studied with SEM, XRD and EIS (electrochemical impedance spectroscopy) technique, respectively. It is found that the electrochemical properties are closely related to the structure and composition characteristics of the anodic coatings. At the same time, the characteristics of the three types of anodic coatings differ significantly, among them, the micro-spark ceramic coating, prepared in the voltage range of 170similar to220V exhibits compact, homogeneous structure and highest corrosion-resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti and Ti alloys can be applied to steels as a protective coating in view of its excellent resistance to corrosive environment. Cold spraying, as a new coating technique, has potential advantages in fabrication of Ti coating in comparison with conventional thermal spraying techniques. In this study, Ti coatings were prepared on carbon steel substrates by cold spraying via controlling the process conditions. The microstructure of coatings was observed by SEM. The porosity of coatings was estimated by image analysis and the bond strength was tested for comparison of the process conditions. Potentiodynamic polarization and open-circuit potential (OCP) measurements were performed to understand the corrosion behavior of the coatings. The SEM examination shows that the coatings become more compact with the increases of pressure and temperature of driving gas. The potentiodynamic polarization curves indicate that the coating which has lower porosity has lower corrosion current. The polarization and OCP measurement reveal that cold-sprayed Ti coating can provide favorable protection to carbon steel substrate. The polishing treatment of coating surface polishes the rough outer layer including the small pores as well as decreases the actual surface area of the coating, leading to the considerable improvement of corrosion resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition effect of nicotinic acid for corrosion of hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid was investigated using quantum chemistry analysis, weight loss test, electrochemical measurement, and scanning electronic microscope (SEM) analysis. Quantum chemistry calculation results showed that nicotinic acid possessed planar structure with a number of active centers, and the populations of the Mulliken charge, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) were found mainly focused around oxygen and nitrogen atoms, and the cyclic of the benzene as well. The results of weight loss test and electrochemical measurement indicated that inhibition efficiency (IE%) increased with inhibitor concentration, and the highest inhibition efficiency was up to 96.7%. The corrosion inhibition of these coatings was discussed in terms of blocking the electrode reaction by adsorption of the molecules at the active centers on the electrode surface. It was found that the adsorption of nicotinic acid on coating surface followed Langmuir adsorption isotherm with single molecular layer, and nicotinic acid adsorbed on the coating surface probably by chemisorption. Nicotinic acid, therefore, can act as a good nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid solution. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot-dipped galvanized zinc and zinc alloy coatings were used as the hot-dipped low alloy zinc coatings (aluminum content less than protective metallic coatings for steel structures in seawater in Chi- or equal to 10 wt%) is equal to or even lower than that of the pure na. Corrosion of the two coatings immersed in sea water in Qingdao zinc sheet, while the performance of the hot-dipped high alloy zinc and Xiamen for 6 years were introduced and analyzed, which pro-coatings is higher than that of the pure zinc sheet. The hot-dipped vides a basis for further development and applications of these coat- high alloy zinc coatings can be further developed for optimal tings in China. Tests proved that the anti-corrosion performance of formance in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Zwiggelaar and M.G.F. Wilson, 'Spectral changes in inhomogeneous media; a quasi-optical approach', Int. J. Infrared Millimeter Waves 14 (10), 2253-2259 (1993)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel deposition process named CoBlastTM, based on grit blasting technology, has been used to deposit hydroxyapatite (HA) onto titanium (Ti) metal using a dopant/abrasive regime. The various powders (HA powder, apatitic abrasives) and the treated substrates were characterised for chemical composition, coating coverage, crystallinity and topography including surface roughness. The surface roughness of the HA surfaces could be altered using apatitic abrasives of different particle sizes. Compared to the standard plasma spraying process, the CoBlast surface produced excellent coating adhesion, lower dissolution, higher levels of mechanical and chemical stability in stimulated body fluid (SBF). Enhanced viability of osteoblastic cells was also observed on the CoBlast HA surfaces compared to the microblast and untreated Ti as well as the plasma HA coating. CoBlast offers an alternative to the traditional methods of coating HA implants with added versatility. Apatites substituted with antimicrobial metals can also be deposited to add functionality to HA coatings without cytotoxicty. The potential use of these coatings as an infection preventing strategy for application on hard tissue implants was assessed in vitro and also in vivo. Surface physicochemical properties and morphology were determined in addition to surface cytocompatibility assessments using a MG-63 osteoblast cell line. The antibacterial potential of the immobilised metal ion on the surface and the eluted ion to a lesser extent, contributed to the anticolonising behaviour of the surfaces against a standard bacteria strain (S. aureus) as well as a number of clinically relevant strains (MRSA, MSSA and S. epidermis). The results revealed that the surfaces coated with silver substituted apatites (AgA) outperformed the other apatites examined (apatites loaded with Zn, Sr and both Ag and Sr ions). Assessment of bacterial adherence on coated K-wires following subcutaneous implantation in a nude mouse infection model (S. aureus) for two days demonstrated that the 12% wt surface outperformed the 5% wt AgA coating. Lower inflammatory responses were activated with the insertion of the Ag loaded K-wires with a localised infection at the implantation site noted over the two day study period. These results indicated that the AgA coating on the surface of orthopaedic implants demonstrate good biocompatibility whilst inhibiting bacterial adhesion and colonising of the implant surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.