966 resultados para human T-cell lymphotropic virus
Resumo:
Background: The Interleukin 28B (IL28B) rs12979860 polymorphisms was recently reported to be associated with the human T-cell leukemia virus type 1 (HTLV-1) proviral load (PvL) and the development of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Methods: In an attempt to examine this hypothesis, we assessed the association of the rs12979860 genotypes with HTLV-1 PvL levels and clinical status in 112 unrelated Brazilian subjects (81 HTLV-1 asymptomatic carriers, 24 individuals with HAM/TSP and 7 with Adult T cell Leukemia/Lymphoma (ATLL)). Results: All 112 samples were successfully genotyped and their PvLs compared. Neither the homozygote TT nor the heterozygote CT mutations nor the combination genotypes (TT/CT) were associated with a greater PvL. We also observed no significant difference in allele distribution between asymptomatic carriers and patients with HTLV-1 associated HAM/TSP. Conclusions: Our study failed to support the previously reported positive association between the IL28B rs12979860 polymorphisms and an increased risk of developing HAM/TSP in the Brazilian population.
Resumo:
Introduction: The seroprevalence of human T-cell leukemia virus type 1 (HTLV-1) is very high among Brazilians (,1:200). HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP) is the most common neurological complication of HTLV-1 infection. HAM/TSP can present with an acute/subacute form of longitudinally extensive myelitis, which can be confused with lesions seen in aquaporin-4 antibody (AQP4-Ab) positive neuromyelitis optica spectrum disorders (NMOSD) on MRI. Moreover, clinical attacks in patients with NMOSD have been shown to be preceded by viral infections in around 30% of cases. Objective: To evaluate the frequency of AQP4-Ab in patients with HAM/TSP. To evaluate the frequency of HTLV-1 infection in patients with NMOSD. Patients and Methods: 23 Brazilian patients with HAM/TSP, 20 asymptomatic HTLV-1+ serostatus patients, and 34 with NMOSD were tested for AQP4-Ab using a standardized recombinant cell based assay. In addition, all patients were tested for HTLV-1 by ELISA and Western blotting. Results: 20/34 NMOSD patients were positive for AQP4-Ab but none of the HAM/TSP patients and none of the asymptomatic HTLV-1 infected individuals. Conversely, all AQP4-Ab-positive NMOSD patients were negative for HTLV-1 antibodies. One patient with HAM/TSP developed optic neuritis in addition to subacute LETM; this patient was AQP4-Ab negative as well. Patients were found to be predominantly female and of African descent both in the NMOSD and in the HAM/TSP group; Osame scale and expanded disability status scale scores did not differ significantly between the two groups. Conclusions: Our results argue both against a role of antibodies to AQP4 in the pathogenesis of HAM/TSP and against an association between HTLV-1 infection and the development of AQP4-Ab. Moreover, the absence of HTLV-1 in all patients with NMOSD suggests that HTLV-1 is not a common trigger of acute attacks in patients with AQP4-Ab positive NMOSD in populations with high HTLV-1 seroprevalence.
Resumo:
Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gag–pol and HTLV-2 gag–pro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.
Resumo:
Human respiratory syncytial virus (HRSV) causes severe infections among children and immunocompromised patients. We compared HRSV infections among Haematopoietic Stem Cell Transplant program (HSCT) patients and children using direct immunofluorescence (DFA), point-of-care RSV Bio Easy® and a polymerase chain reaction (PCR) assay. Overall, 102 samples from HSCT patients and 128 from children obtained positivity rate of 18.6% and 14.1% respectively. PCR sensitivity was highest mainly on samples collected after five days of symptoms onset. A combination of both DFA and reverse transcriptase-PCR methods for HSCT high-risk patients is the best diagnostic flow for HRSV diagnosis among these patients.
Resumo:
We investigated the relationship between the fusion selectivity of the envelope glycoprotein (env) and the tropism of different human immunodeficiency virus type 1 (HIV-1) isolates for CD4+ human T-cell lines vs. primary macrophages. Recombinant vaccinia viruses were prepared encoding the envs from several well-characterized HIV-1 isolates with distinct cytotropisms. Cells expressing the recombinant envs were mixed with various CD4+ partner cell types; cell fusion was monitored by a quantitative reporter gene assay and by syncytia formation. With CD4+ continuous cell lines as partners (T-cell lines, HeLa cells expressing recombinant CD4), efficient fusion occurred with the envs from T-cell line-tropic isolates (IIIB, LAV, SF2, and RF) but not with the envs from macrophage-tropic isolates (JR-FL, SF162, ADA, and Ba-L). The opposite selectivity pattern was observed with primary macrophages as cell partners; stronger fusion occurred with the envs from the macrophage-tropic than from the T-cell line-tropic isolates. All the envs showed fusion activity with peripheral blood mononuclear cells as partners, consistent with the ability of this cell population to support replication of all the corresponding HIV-1 isolates. These fusion selectivities were maintained irrespective of the cell type used to express env, thereby excluding a role for differential host cell modification. We conclude that the intrinsic fusion selectivity of env plays a major role in the tropism of a HIV-1 isolate for infection of CD4+ T-cell lines vs. primary macrophages, presumably by determining the selectivity of virus entry and cell fusion.
Resumo:
Primary infection with the human herpesvirus, Epstein-Barr virus (EBV), may result in subclinical seroconversion or may appear as infectious mononucleosis (IM), a lymphoproliferative disease of variable severity. Why primary infection manifests differently between patients is unknown, and, given the difficulties in identifying donors undergoing silent seroconversion, little information has been reported. However, a longstanding assumption has been held that IM represents an exaggerated form of the virologic and immunologic events of asymptomatic infection. T-cell receptor (TCR) repertoires of a unique cohort of subclinically infected patients undergoing silent infection were studied, and the results highlight a fundamental difference between the 2 forms of infection. In contrast to the massive T-cell expansions mobilized during the acute symptomatic phase of IM, asymptomatic donors largely maintain homeostatic T-cell control and peripheral blood repertoire diversity. This disparity cannot simply be linked to severity or spread of the infection because high levels of EBV DNA were found in the blood from both types of acute infection. The results suggest that large expansions of T cells within the blood during IM may not always be associated with the control of primary EBV infection and that they may represent an overreaction that exacerbates disease. (C) 2001 by The American Society of Hematology.
Resumo:
Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment. TCR sequencing also revealed that this particular clone arose at least 1 year before vaccination, displayed long-term persistence, and efficient homing to metastases. Remarkably, during concomitant vaccination over 3.5 years, the frequency of the pre-existing clone progressively increased, reaching up to 2.5% of the circulating CD8 pool while its effector functions were enhanced. In parallel, the disease stabilized, but subsequently progressed with loss of Melan-A expression by melanoma cells. Collectively, combined ex vivo analysis of T cell differentiation and clonality revealed for the first time a strong expansion of a tumor Ag-specific human T cell clone, comparable to protective virus-specific T cells. The observed successful boosting by peptide vaccination support further development of immunotherapy by including strategies to overcome immune escape.
Resumo:
Induction of apoptosis of virus-infected cells is an important host cell defence mechanism. However, some viruses have incorporated genes that encode anti-apoptotic proteins or modulate the expression of cellular regulators of apoptosis. Here, Edgar Meinl and colleagues discuss recent evidence that viral interference with host cell apoptosis leads to enhanced viral replication, and to evasion of cytotoxic T-cell effects.
Resumo:
We analyzed the genetic recombination pattern of the T-cell receptor beta-chain gene (TCR-beta) in order to identify clonal expansion of T-lymphocytes in 17 human T-lymphotropic virus type I (HTLV-I)-positive healthy carriers, 7 of them with abnormal features in the peripheral blood lymphocytes. Monoclonal or oligoclonal expansion of T-cells was detected in 5 of 7 HTLV-I-positive patients with abnormal lymphocytes and unconfirmed diagnosis by using PCR amplification of segments of TCR-beta gene, in a set of reactions that target 102 different variable (V) segments, covering all members of the 24 V families available in the gene bank, including the more recently identified segments of the Vbeta-5 and Vbeta-8 family and the two diversity beta segments. Southern blots, the gold standard method to detect T-lymphocyte clonality, were negative for all of these 7 patients, what highlights the low sensitivity of this method that requires a large amount of very high quality DNA. To evaluate the performance of PCR in the detection of clonality we also analyzed 18 leukemia patients, all of whom tested positive. Clonal expansion was not detected in any of the negative controls or healthy carriers without abnormal lymphocytes. In conclusion, PCR amplification of segments of rearranged TCR-beta is reliable and highly suitable for the detection of small populations of clonal T-cells in asymptomatic HTLV-I carriers who present abnormal peripheral blood lymphocytes providing an additional instrument for following up these patients with potentially higher risk of leukemia.
Resumo:
Dengue virus (DV)-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0). Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors), eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.
Resumo:
Primary varicella-zoster virus (VZV) infection during childhood leads to varicella commonly known as chickenpox. After primary infection has occurred VZV establishes latency in the host. During subsequent lifetime the virus can cause reactivated infection clinically known as herpes zoster or shingles. In immunodeficient patients’ dissemination of the virus can lead to life-threatening disease. Withdrawal of acyclovir drug prophylaxis puts allogeneic hematopoietic stem-cell transplantation (HSCT) patients at increased risk for herpes zoster as long as VZV-specific cellular immunity is impaired. Although an efficient live attenuated VZV vaccine for zoster prophylaxis exists, it is not approved in immunocompromised patients due to safety reasons. Knowledge of immunogenic VZV proteins would allow designing a noninfectious nonhazardous subunit vaccine suitable for patients with immunodeficiencies. The objective of this study was to identify T cell defined virus proteins of a VZV-infected Vero cell extract that we have recently described as a reliable antigen format for interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays (Distler et al. 2008). We first separated the VZV-infected/-uninfected Vero cell extracts by size filtration and reverse-phase high performance liquid chromatography (RP-HPLC). The collected fractions were screened for VZV reactivity with peripheral blood mononuclear cells (PBMCs) of VZV-seropositive healthy individuals in the sensitive IFN-γ ELISpot assay. Using this strategy, we successfully identified bioactive fractions that contained immunogenic VZV material. VZV immune reactivity was mediated by CD4+ memory T lymphocytes (T cells) of VZV-seropositive healthy individuals as demonstrated in experiments with HLA blockade antibodies and T cell subpopulations already published by Distler et al. We next analyzed the bioactive fractions with electrospray ionization mass spectrometry (ESI-MS) techniques and identified the sequences of three VZV-derived proteins: glycoprotein E (gE); glycoprotein B (gB), and immediate early protein 62 (IE62). Complementary DNA of these identified proteins was used to generate in vitro transcribed RNA for effective expression in PBMCs by electroporation. We thereby established a reliable and convenient IFN-γ ELISPOT approach to screen PBMCs of healthy donors and HSCT patients for T cell reactivity to single full-length VZV proteins. Application in 10 VZV seropositive healthy donors demonstrated much stronger recognition of glycoproteins gE and gB compared to IE62. In addition, monitoring experiments with ex vivo PBMCs of 3 allo-HSCT patients detected strongly increased CD4+ T cell responses to gE and gB for several weeks to months after zoster onset, while IE62 reactivity remained moderate. Overall our results show for the first time that VZV glycoproteins gE and gB are major targets of the post-transplant anti-zoster CD4+ T cell response. The screening approach introduced herein may help to select VZV proteins recognized by memory CD4+ T cells for inclusion in a subunit vaccine, which can be safely used for zoster prophylaxis in immunocompromised HSCT patients.
Resumo:
Human T cell leukemia/lymphotropic virus type I (HTLV-I) induces adult T cell leukemia/lymphoma (ATLL). The mechanism of HTLV-I oncogenesis in T cells remains partly elusive. In vitro, HTLV-I induces ligand-independent transformation of human CD4+ T cells, an event that correlates with acquisition of constitutive phosphorylation of Janus kinases (JAK) and signal transducers and activators of transcription (STAT) proteins. However, it is unclear whether the in vitro model of HTLV-I transformation has relevance to viral leukemogenesis in vivo. Here we tested the status of JAK/STAT phosphorylation and DNA-binding activity of STAT proteins in cell extracts of uncultured leukemic cells from 12 patients with ATLL by either DNA-binding assays, using DNA oligonucleotides specific for STAT-1 and STAT-3, STAT-5 and STAT-6 or, more directly, by immunoprecipitation and immunoblotting with anti-phosphotyrosine antibody for JAK and STAT proteins. Leukemic cells from 8 of 12 patients studied displayed constitutive DNA-binding activity of one or more STAT proteins, and the constitutive activation of the JAK/STAT pathway was found to persist over time in the 2 patients followed longitudinally. Furthermore, an association between JAK3 and STAT-1, STAT-3, and STAT-5 activation and cell-cycle progression was demonstrated by both propidium iodide staining and bromodeoxyuridine incorporation in cells of four patients tested. These results imply that JAK/STAT activation is associated with replication of leukemic cells and that therapeutic approaches aimed at JAK/STAT inhibition may be considered to halt neoplastic growth.
Resumo:
Aberrant glycosylation of the mucin molecule (encoded by the gene MUC-1) on human epithelial cell tumors leads to the exposure of tumor-associated epitopes recognized by patients' antibodies and cytotoxic T cells. Consequently, these epitopes could be considered targets for immunotherapy. We designed a cellular vaccine, employing, instead of tumor cells, autologous Epstein-Barr virus (EBV)-immortalized B cells as carriers of tumor-associated mucin, to take advantage of their costimulatory molecules for T-cell activation. The vaccine was tested in chimpanzees because of the identity of the human and chimpanzee MUC-1 tandem repeat sequence. EBV-immortalized B cells derived from two chimpanzees were transfected with MUC-1 cDNA, treated with glycosylation inhibitor phenyl-N-acetyl-alpha-D-galactosaminide to expose tumor-associated epitopes, irradiated, and injected subcutaneously four times at 3-week intervals. One vaccine preparation also contained cells transduced with the interleukin 2 (IL-2) cDNA and producing low levels of IL-2. Already after the first injection we found in the peripheral blood measurable frequency of cytotoxic T-cell precursors specific for underglycosylated mucin. The highest frequency observed was after the last boost, in the lymph node draining the vaccination site. Delayed-type hypersensitivity reaction to the injected immunogens was also induced, whereas no appearance of mucin-specific antibodies was seen. Long-term observation of the animals yielded no signs of adverse effects of this immunization. Autologous antigen-presenting cells, like EBV-immortalized B cells, expressing tumor-associated antigens are potentially useful immunogens for induction of cellular anti-tumor responses in vivo.
Resumo:
A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.