915 resultados para high-molecular-weight glutenin subunit(HMW-GS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipid content of three cores from Lake Enol (Picos de Europa National Park, Asturias, Northern Spain) was studied. The n-alkane profiles indicated a major input from terrigenous plants [predominance of high molecular weight (HMW) alkanes] since ca. 1695 AD to the water body, although the uppermost cm revealed a predominance of organic matter (OM) derived from algae, as the most abundant alkane was C17. Three units revealing different environmental conditions were defined. Unit A (ca. 1695–1860 AD) in the lowermost parts of ENO13-10 (< 12 cm) and ENO13-15 (< 28 cm) was identified and was characterized by higher OM input and evidence of minimal degradation (high CPI values, predominance of HMW n-alkanoic acids and good correspondence between the predominant n-alkane and n-alkanoic acid chains). These findings could be linked to the Little Ice Age, when cold and humid conditions may have favored an increase in total organic carbon (TOC) and n-alkane and n-alkanoic acid content (greater terrigenous OM in-wash), and may have also reduced bacterial activity. In Unit B (ca. 1860–1980 AD) the lack of correspondence between the n-alkane and n-alkanoic acid profiles of ENO13-10 (12–4 cm) and ENO13-15 (28–8 cm) suggested a certain preferential microbial synthesis of long chain saturated fatty acids from primary OM and/or bacterial activity, coinciding with a decrease in OM input, which could be linked to the global warming that started in the second half of the 19th century. In ENO13-7 the low OM input (low TOC) was accompanied by some bacterial degradation (predominance ofHMWn-alkanoic acids but with a bimodal distribution) in the lowermost 16–5 cm. Evidence of considerable phytoplankton productivity and microbial activity was especially significant in Unit C (ca. 1980–2013 AD) identified in the uppermost part of all three cores (5 cm in ENO13-7, 4 cm in ENO13-10 and 8 cm in ENO13-15), coinciding with higher concentrations of n-alkanes and n-alkanoic acids, which were considered to be linked to warmer and drier conditions, as well as to greater anthropogenic influence in modern times. Plant sterols, such as b-sitosterol, campesterol and stigmasterol, were significantly present in the cores. In addition, fecal stanols, such as 24-ethylcoprostanol from herbivores, were present, thereby indicating a continuous and significant pollution input derived from these animals since the 17th century, being more important in the last 20 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N1-ethyl-N11-[(cyclopropyl)methyl]-4,8,-diazaundecane (CPENSpm) is a polyamine analogue that represents a new class of antitumor agents that demonstrate phenotype-specific cytotoxic activity. However, the precise mechanism of its selective cytotoxic activity is not known. CPENSpm treatment results in the superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) in sensitive cell types and has been demonstrated to induce programmed cell death (PCD). The catalysis of polyamines by the SSAT/polyamine oxidase (PAO) pathway produces H2O2 as one product, suggesting that PCD produced by CPENSpm may be, in part, due to oxidative stress as a result of H2O2 production. In the sensitive human nonsmall cell line H157, the coaddition of catalase significantly reduces high molecular weight (HMW) DNA (≥50 kb) and nuclear fragmentation. Important to note, specific inhibition of PAO by N,N′-bis(2,3-butadienyl)-1,4-butane-diamine results in a significant reduction of the formation of HMW DNA and nuclear fragmentation. In contrast, the coaddition of catalase or PAO inhibitor has no effect on reducing HMW DNA fragmentation induced by N1-ethyl-N11-[(cycloheptyl)methyl]-4,8,-diazaundecane, which does not induce SSAT and does not deplete intracellular polyamines. These results strongly suggest that H2O2 production by PAO has a role in CPENSpm cytotoxicity in sensitive cells via PCD and demonstrate a potential basis for differential sensitivity to this promising new class of antineoplastic agents. Furthermore, the data suggest a general mechanism by which, under certain stimuli, cells can commit suicide through catabolism of the ubiquitous intracellular polyamines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human basic fibroblast growth factor (FGF-2) occurs in four isoforms: a low molecular weight (LMW FGF-2, 18 kDa) and three high molecular weight (HMW FGF-2, 22, 22.5, and 24 kDa) forms. LMW FGF-2 is primarily cytoplasmic and functions in an autocrine manner, whereas HMW FGF-2s are nuclear and exert activities through an intracrine, perhaps nuclear, pathway. Selective overexpression of HMW FGF-2 forms in fibroblasts promotes growth in low serum, whereas overexpression of LMW FGF-2 does not. The HMW FGF-2 forms have two functional domains: an amino-terminal extension and a common 18-kDa amino acid sequence. To investigate the role of these regions in the intracrine signaling of HMW FGF-2, we produced stable transfectants of NIH 3T3 fibroblasts overexpressing either individual HMW FGF-2 forms or artificially nuclear-targeted LMW FGF-2. All of these forms of FGF-2 localize to the nucleus/nucleolus and induce growth in low serum. The nuclear forms of FGF-2 trigger a mitogenic stimulus under serum starvation conditions and do not specifically protect the cells from apoptosis. These data indicate the existence of a specific role for nuclear FGF-2 and suggest that LMW FGF-2 represents the biological messenger in both the autocrine/paracrine and intracrine FGF-2 pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparin has been used as a clinical anticoagulant for more than 50 years, making it one of the most effective pharmacological agents known. Much of heparin's activity can be traced to its ability to bind antithrombin III (AT-III). Low molecular weight heparin (LMWH), derived from heparin by its controlled breakdown, maintains much of the antithrombotic activity of heparin without many of the serious side effects. The clinical significance of LMWH has highlighted the need to understand and develop chemical or enzymatic means to generate it. The primary enzymatic tools used for the production of LMWH are the heparinases from Flavobacterium heparinum, specifically heparinases I and II. Using pentasaccharide and hexasaccharide model compounds, we show that heparinases I and II, but not heparinase III, cleave the AT-III binding site, leaving only a partially intact site. Furthermore, we show herein that glucosamine 3-O sulfation at the reducing end of a glycosidic linkage imparts resistance to heparinase I, II, and III cleavage. Finally, we examine the biological and pharmacological consequences of a heparin oligosaccharide that contains only a partial AT-III binding site. We show that such an oligosaccharide lacks some of the functional attributes of heparin- and heparan sulfate-like glycosaminoglycans containing an intact AT-III site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective invasion of alfalfa by Rhizobium meliloti Rm1021 normally requires the presence of succinoglycan, an exopolysaccharide (EPS) produced by the bacterium. However, Rm1021 has the ability to produce a second EPS (EPS II) that can suppress the symbiotic defects of succinoglycan-deficient strains. EPS II is a polymer of modified glucose-(beta-1,3)-galactose subunits and is produced by Rm1021 derivatives carrying either an expR101 or mucR mutation. If the ability to synthesize succinoglycan is blocked genetically, expR101 derivatives of Rm1021 are nodulation-proficient, whereas mucR derivatives of Rm1021 are not. The difference in nodulation proficiency between these two classes of EPS II-producing strains is due to the specific production of a low molecular weight form of EPS II by expR101 strains. A low molecular weight EPS II fraction consisting of 15-20 EPS II disaccharide subunits efficiently allows nodule invasion by noninfective strains when present in amounts as low as 7 pmol per plant, suggesting that low molecular weight EPS II may act as a symbiotic signal during infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism(s) that regulates invasion of trophoblasts through the uterine epithelium during embryo implantation and nidation in hemochorial placental mammals is poorly understood. While limited trophoblast invasion is essential for the establishment of normal pregnancy, dysregulation of this process may contribute to the pathogenesis of choriocarcinoma, a highly invasive and lethal form of cancer arising from the trophoblasts. We have previously demonstrated that rabbit uteroglobin (UG), a cytokine-like, antiinflammatory protein, produced by the endometrial epithelium during pregnancy, has a potent antichemotactic effect on neutrophils and monocytes in vitro. Here, we report that recombinant human UG (hUG) dramatically suppresses invasion of human trophoblasts and NIH 3T3 cells through an artificial basement membrane (Matrigel) in vitro but has no effect on that of human choriocarcinoma cells. We identified a previously unreported high-affinity, high molecular weight (approximately 190 kDa), nonglycosylated hUG-binding protein, readily detectable on human trophoblasts and NIH 3T3 cells but totally lacking on choriocarcinoma cells. Taken together, these results raise the possibility that (i) hUG plays a critical role in regulating cellular invasiveness, at least in part, via its previously unrecognized cell surface binding site, and (ii) some of the numerous biological activities of proteins of the UG family, reported so far, may be mediated via this binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho teve como principal objetivo produzir membranas porosas de carboximetilquitosana e hidrogéis de quitosana com propriedades físico-químicas e mecânicas adequadas para aplicações em Engenharia de Tecidos. Para isso, quitosanas com diferentes graus de acetilação (4,0%<GA<40%) e de elevada massa molar média viscosimétrica (Mv>750.000 g.mol-1) foram produzidas através da aplicação de processos consecutivos de desacetilação assistida por irradiação de ultrassom de alta intensidade (DAIUS) à beta-quitina extraída de gládios de lulas Doryteuthis spp. A carboximetilação de quitosana extensivamente desacetilada (Qs-3; GA=4%) foi realizada pela reação com ácido monocloroacético em meio isopropanol/solução aquosa de NaOH, gerando a amostra CMQs-0 (GS≈0,98; Mv≈190.000 g.mol-1). A irradiação de ultrassom de alta intensidade foi empregada para tratar solução aquosa de CMQs-0 durante 1 h e 3 h, resultando nas amostras CMQs-1 (Mv≈94.000 g.mol-1) e CMQs-3 (Mv≈43.000 g.mol-1), respectivamente. Para a produção de membranas reticuladas, genipina foi adicionada em diferentes concentrações (1,0x10-4 mol.L-1, 3,0x10-4 mol.L-1 ou 5,0x10-4 mol.L-1) às soluções aquosas das CMQs, que foram vertidas em placas de Petri e a reação de reticulação procedeu por 24 h. Em seguida, as membranas reticuladas (M-CMQs) foram liofilizadas, neutralizadas, lavadas e liofilizadas novamente, resultando em nove amostras, que foram caracterizadas quanto ao grau médio de reticulação (GR), grau médio de hidratação (GH), morfologia, propriedades mecânicas e quanto à susceptibilidade à degradação por lisozima. O grau médio de reticulação (GR) foi tanto maior quanto maior a concentração de genipina empregada na reação, variando de GR≈3,3% (M-CMQs-01) a GR≈17,8% (M-CMQs-35). As análises de MEV revelaram que as membranas reticuladas M-CMQs são estruturas porosas que apresentam maior densidade de poros aparentes quanto maiores os valores de Mve GR. Entretanto, as membranas preparadas a partir de CMQs de elevada massa molar (Mv>94.000 g.mol-1) e pouco reticuladas (GR<10%), apresentaram propriedades mecânicas superiores em termos de resistência máxima à tração (>170 kPa) e elongação máxima à ruptura (>40%). Por outro lado, as membranas mais susceptíveis à degradação enzimática foram aquelas preparadas a partir de CMQs de baixa massa molar (Mv≈43.000 g.mol-1) e que exibiram baixos graus de reticulação (GR<11%). Hidrogéis estáveis de quitosana sem o uso de qualquer agente de reticulação externo foram produzidos a partir da gelificação de soluções aquosas de quitosana com solução de NaOH ou vapor de NH3. Os hidrogéis produzidos a partir de soluções de quitosana de elevada massa molar média ponderal (Mw≈640.000 g.mol-1) e extensivamente desacetilada (DA≈2,8%) em concentrações poliméricas acima 2,0%, exibiram melhores propriedades mecânicas com o aumento da concentração polimérica, devido à formação de numerosos emaranhamentos físicos das cadeias poliméricas em solução. Os resultados mostram que as propriedades físico-químicas e mecânicas dos hidrogéis de quitosana podem ser controladas variando a concentração do polímero e o processo de gelificação. A avaliação biológica de tais hidrogéis para a regeneração de miocárdio infartado de ratos revelou que os hidrogéis de quitosana preparados a partir de soluções de polímero a 1,5% foram perfeitamente incorporados sobre a superfície do epicárdio do coração e apresentaram degradação parcial acompanhada por infiltração de células mononucleares.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reprinted from articles by Charles A. Kraus and Edward H. Zeitfuchs in the Journal of the American Chemical Society, v. 44, no. 6, June, 1922 and v. 44, no. 12, December, 1922.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic magnetic susceptibility tensors chi of paramagnetic metal ions are manifested in pseudocontact shifts, residual dipolar couplings, and other paramagnetic observables that present valuable long-range information for structure determinations of protein-ligand complexes. A program was developed for automatic determination of the chi-tensor anisotropy parameters and amide resonance assignments in proteins labeled with paramagnetic metal ions. The program requires knowledge of the three-dimensional structure of the protein, the backbone resonance assignments of the diamagnetic protein, and a pair of 2D N-15-HSQC or 3D HNCO spectra recorded with and without paramagnetic metal ion. It allows the determination of reliable chi-tensor anisotropy parameters from 2D spectra of uniformly N-15-labeled proteins of fairly high molecular weight. Examples are shown for the 185-residue N-terminal domain of the subunit epsilon from E. coli DNA polymerase III in complex with the subunit theta and La3+ in its diamagnetic and Dy3+, Tb3+, and Er3+ in its paramagnetic form.