955 resultados para high tolerance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endopolyploid cells (hereafter - polyploid cells), which contain whole genome duplications in an otherwise diploid organism, play vital roles in development and physiology of diverse organs such as our heart and liver. Polyploidy is also observed with high frequency in many tumors, and division of such cells frequently creates aneuploidy (chromosomal imbalances), a hallmark of cancer. Despite its frequent occurrence and association with aneuploidy, little is known about the specific role that polyploidy plays in diverse contexts. Using a new model tissue, the Drosophila rectal papilla, we sought to uncover connections between polyploidy and aneuploidy during organ development. Our lab previously discovered that the papillar cells of the Drosophila hindgut undergo developmentally programmed polyploid cell divisions, and that these polyploid cell divisions are highly error-prone. Time-lapse studies of polyploid mitosis revealed that the papillar cells undergo a high percentage of tripolar anaphase, which causes extreme aneuploidy. Despite this massive chromosome imbalance, we found the tripolar daughter cells are viable and support normal organ development and function, suggesting acquiring extra genome sets enables a cell to tolerate the genomic alterations incurred by aneuploidy. We further extended these findings by seeking mechanisms by which the papillar cells tolerated this resultant aneuploidy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Early-life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A3 receptor in cardiovascular diseases is not clear. In this study, gene-modified mice were used to investigate the hypothesis that lack of A3 signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX-HS) in mice. METHODS AND RESULTS: Wild-type (A3 (+/+)) mice subjected to UNX-HS developed hypertension compared with controls (mean arterial pressure 106±3 versus 82±3 mm Hg; P<0.05) and displayed an impaired metabolic phenotype (eg, increased adiposity, reduced glucose tolerance, hyperinsulinemia). These changes were associated with both cardiac hypertrophy and fibrosis together with renal injuries and proteinuria. All of these pathological hallmarks were significantly attenuated in the A3 (-/-) mice. Mechanistically, absence of A3 receptors protected from UNX-HS-associated increase in renal NADPH oxidase activity and Nox2 expression. In addition, circulating cytokines including interleukins 1β, 6, 12, and 10 were increased in A3 (+/+) following UNX-HS, but these cytokines were already elevated in naïve A3 (-/-) mice and did not change following UNX-HS. CONCLUSIONS: Reduction in nephron number combined with chronic HS intake is associated with oxidative stress, chronic inflammation, and development of hypertension in mice. Absence of adenosine A3 receptor signaling was strongly protective in this novel mouse model of renal and cardiovascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:


Experimental tests have been completed for high-strength 8.8 bolts for studying their mechanical performance subjected to tensile loading. As observed from these tests, failure of structural bolts has been identified as in one of two ways: threads stripping and necking of the threaded portion of the bolt shank, which is possibly due to the degree of fit between internal and external threads. Following the experimental work, a numerical approach has been developed for demonstration of the tensile performance with proper consideration of tolerance class between bolts and nuts. The degree of fit between internal and external threads has been identified as a critical factor affecting failure mechanisms of high-strength structural bolts in tension, which is caused by the machining process. In addition, different constitutive material laws have been taken into account in the numerical simulation, demonstrating the entire failure mechanism for structural bolts with different tolerance classes in their threads. It is also observed that the bolt capacities are closely associated with their failure mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35 degrees C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20-30 degrees C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32 degrees C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1 degrees C rise in thermal optimum (T(opt)), the maximum intrinsic rate of increase (r(max)) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is the most important legume crop in the world, providing low-cost, high quality protein, minerals and dietary fiber for human nutrition. The crop was originated from diversity centers in America and exhibits adaptation abilities to different environmental conditions, including soil with low pH. Acid soils occupy 30% of the agro ecosystem areas in the world. In Madeira, acid Andosols and unsatured Cambisols are the dominant groups of soils. Generally, under acidic and infertile conditions, besides of H+ toxicity, soluble aluminium (Al) is the most important abiotic factor limiting plant development and crop productivity. In the field, the hidden roots are also affected and the reduction of root growth under Al stress can be clearly observed in early stages. Seedlings of fifty bean accessions from the Archipelago of Madeira were tested under controlled conditions in the presence of 50 mM Al at pH 4.4. In general, the tested germplasm appeared to be sensitive or very sensitive to Al toxicity. However, fifteen traditional cultivars clearly exhibited elevated Al-tolerance, with an average root relative elongation (RRE) exceeding 50%, while top six accessions surpassed the 60% RRE mark. The Madeira bean germplasm is a valuable resource for sustainable crop production in acid soils and it could be used as parental lines in breeding programs aimed for Al tolerance in common beans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is the most important legume crop in the world, providing low-cost, high quality protein, minerals and dietary fiber for human nutrition. The crop was originated from diversity centers in America and exhibits adaptation abilities to different environmental conditions, including soil with low pH. Acid soils occupy 30% of the agro ecosystem areas in the world. In Madeira, acid Andosols and unsatured Cambisols are the dominant groups of soils. Generally, under acidic and infertile conditions, besides of H+ toxicity, soluble aluminium (Al) is the most important abiotic factor limiting plant development and crop productivity. In the field, the hidden roots are also affected and the reduction of root growth under Al stress can be clearly observed in early stages. Seedlings of fifty bean accessions from the Archipelago of Madeira were tested under controlled conditions in the presence of 50 mM Al at pH 4.4. In general, the tested germplasm appeared to be sensitive or very sensitive to Al toxicity. However, fifteen traditional cultivars clearly exhibited elevated Al-tolerance, with an average root relative elongation (RRE) exceeding 50%, while top six accessions surpassed the 60% RRE mark. The Madeira bean germplasm is a valuable resource for sustainable crop production in acid soils and it could be used as parental lines in breeding programs aimed for Al tolerance in common beans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vigna unguiculata (L.) Walp (cowpea) is a food crop with high nutritional value that is cultivated throughout tropical and subtropical regions of the world. The main constraint on high productivity of cowpea is water deficit, caused by the long periods of drought that occur in these regions. The aim of the present study was to select elite cowpea genotypes with enhanced drought tolerance, by applying principal component analysis to 219 first-cycle progenies obtained in a recurrent selection program. The experimental design comprised a simple 15 x 15 lattice with 450 plots, each of two rows of 10 plants. Plants were grown under water-deficit conditions by applying a water depth of 205 mm representing one-half of that required by cowpea. Variables assessed were flowering, maturation, pod length, number and mass of beans/pod, mass of 100 beans, and productivity/plot. Ten elite cowpea genotypes were selected, in which principal components 1 and 2 encompassed variables related to yield (pod length, beans/pod, and productivity/plot) and life precocity (flowering and maturation), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.