822 resultados para hierarchical entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach for the fabrication and integration of vertically aligned forests of amorphous carbon nanowires (CNWs), using only standard lithography, oxygen plasma treatment, and thermal processing. The simplicity and scalability of this process, as well as the hierarchical organization of CNWs, provides a potential alternative to the use of carbon nanotubes and graphene for applications in microsystems and high surface area materials. The CNWs are highly branched at the nanoscale, and novel hierarchical microstructures with CNWs connected to a solid amorphous core are made by controlling the plasma treatment time. By multilayer processing we demonstrate deterministic joining of CNW micropillars into 3D sensing networks. Finally we show that these networks can be chemically functionalized and used for measurement of DNA binding with increased sensitivity. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the stiffness and strength of lattices with multiple hierarchical levels. We examine two-dimensional and three-dimensional lattices with up to three levels of structural hierarchy. At each level, the topology and the orientation of the lattice are prescribed, while the relative density is varied over a defined range. The properties of selected hierarchical lattices are obtained via a multiscale approach applied iteratively at each hierarchical level. The results help to quantify the effect that multiple orders of structural hierarchy produces on stretching and bending dominated lattices. Material charts for the macroscopic stiffness and strength illustrate how the property range of the lattices can expand as subsequent levels of hierarchy are added. The charts help to gain insight into the structural benefit that multiple hierarchies can impart to the macroscopic performance of a lattice. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global maximum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Via the combination of an electrospinning method with a hydrothermal reaction, a large-scale cedar-like hierarchical nanostructured TiO2 film with an anatase/rutile composite phase was fabricated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission of electrons through a hierarchical self-assembly of GaAs/AlxGa(1-)xAs quantum dots (QDs) is calculated using the coupled-channel recursion method. Our results reveal that the number of conductance peaks does not change when the barrier widths change, but the intensities decrease as the barrier widths increase. The conductance peaks will shift towards low Fermi energies as the transverse width of GaAs QD increases, as the thickness of GaAs quantum well increases, or as the height of GaAs QDs decreases. Our calculated results may be useful in the application of QDs to photoelectric devices. (c) 2005 American Institute of Physics.