950 resultados para heart stroke volume


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coronary artery disease is prevalent in patients who have severe emphysema and who are being considered for lung volume reduction surgery (LVRS). Significant valvular heart diseases may also coexist in these patients. Few thoracic surgeons have performed LVRS in patients who have severe cardiac diseases. Conversely, few cardiac surgeons have been willing to undertake major cardiac surgery in patients who have severe emphysema. This report reviews the evidence regarding combined cardiac surgery and LVRS to determine the optimal management strategy for patients who have severe emphysema and who are suitable for LVRS, but who also have coexisting significant cardiac diseases that are operable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal dysfunction represents a frequent comorbidity in patients with in chronic heart failure and is not only a strong predictor of mortality, but also causally linked to the development and progression of CHF. Mechanisms involved in the cross-talk between the kidney and the heart include the up-regulated sympathetic nerve system, activation of the renin-angiotensin-aldosterone system, vasopressin release and decreased activity of arterial baroreceptors and natriuretic peptides resulting in abnormal salt and water retention. The main therapeutic goals for patients with the so-called cardiorenal syndrome is the normalization of volume status while avoiding overdiuresis and renal dysfunction as well as the implementation of an evidence-based pharmacologic treatment to improve patient outcome. If these two goals are not achieved with conventional therapy, renal replacement therapy should be discussed in an interdisciplinary approach. All current renal replacement techniques have proved to be useful in controlling hypervolemia and ameliorating functional cardiac parameters and quality of life in patients with heart failure. Nevertheless, the influence of renal replacement therapy on long-term survival of affected patients has not been addressed in large controlled studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current article presents a novel physiological control algorithm for ventricular assist devices (VADs), which is inspired by the preload recruitable stroke work. This controller adapts the hydraulic power output of the VAD to the end-diastolic volume of the left ventricle. We tested this controller on a hybrid mock circulation where the left ventricular volume (LVV) is known, i.e., the problem of measuring the LVV is not addressed in the current article. Experiments were conducted to compare the response of the controller with the physiological and with the pathological circulation, with and without VAD support. A sensitivity analysis was performed to analyze the influence of the controller parameters and the influence of the quality of the LVV signal on the performance of the control algorithm. The results show that the controller induces a response similar to the physiological circulation and effectively prevents over- and underpumping, i.e., ventricular suction and backflow from the aorta to the left ventricle, respectively. The same results are obtained in the case of a disturbed LVV signal. The results presented in the current article motivate the development of a robust, long-term stable sensor to measure the LVV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic heart transplant rejection, i.e. cardiac allograft vasculopathy (CAV) is a major adverse prognostic factor after heart transplantation (HTx). This study tested the hypothesis that the relative myocardial blood volume (rBV) as quantified by myocardial contrast echocardiography accurately detects severe CAV as defined by coronary intravascular ultrasound (IVUS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Standard stroke CT protocols start with non-enhanced CT followed by perfusion-CT (PCT) and end with CTA. We aimed to evaluate the influence of the sequence of PCT and CTA on quantitative perfusion parameters, venous contrast enhancement and examination time to save critical time in the therapeutic window in stroke patients. METHODS AND MATERIALS Stroke CT data sets of 85 patients, 47 patients with CTA before PCT (group A) and 38 with CTA after PCT (group B) were retrospectively analyzed by two experienced neuroradiologists. Parameter maps of cerebral blood flow, cerebral blood volume, time to peak and mean transit time and contrast enhancements (arterial and venous) were compared. RESULTS Both readers rated contrast of brain-supplying arteries to be equal in both groups (p=0.55 (intracranial) and p=0.73 (extracranial)) although the extent of venous superimposition of the ICA was rated higher in group B (p=0.04). Quantitative perfusion parameters did not significantly differ between the groups (all p>0.18), while the extent of venous superimposition of the ICA was rated higher in group B (p=0.04). The time to complete the diagnostic CT examination was significantly shorter for group A (p<0.01). CONCLUSION Performing CTA directly after NECT has no significant effect on PCT parameters and avoids venous preloading in CTA, while examination times were significantly shorter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by circular singular value decomposition deconvolution maps (Tmax > 6 s) and results were compared with volumes obtained with non-deconvolved maps (time to peak > 4 s). Loss of penumbral volume was defined as difference of post- minus pretreatment diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between baseline characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collaterals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfusion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with 3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was -2% with -1.5 ml/h, indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS: Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS: For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION: Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND It is often assumed that blood pressure increases acutely after major stroke, resulting in so-called post-stroke hypertension. In view of evidence that the risks and benefits of blood pressure-lowering treatment in acute stroke might differ between patients with major ischaemic stroke and those with primary intracerebral haemorrhage, we compared acute-phase and premorbid blood pressure levels in these two disorders. METHODS In a population-based study in Oxfordshire, UK, we recruited all patients presenting with stroke between April 1, 2002, and March 31, 2012. We compared all acute-phase post-event blood pressure readings with premorbid readings from 10-year primary care records in all patients with acute major ischaemic stroke (National Institutes of Health Stroke Scale >3) versus those with acute intracerebral haemorrhage. FINDINGS Of 653 consecutive eligible patients, premorbid and acute-phase blood pressure readings were available for 636 (97%) individuals. Premorbid blood pressure (total readings 13,244) had been measured on a median of 17 separate occasions per patient (IQR 8-31). In patients with ischaemic stroke, the first acute-phase systolic blood pressure was much lower than after intracerebral haemorrhage (158·5 mm Hg [SD 30·1] vs 189·8 mm Hg [38·5], p<0·0001; for patients not on antihypertensive treatment 159·2 mm Hg [27·8] vs 193·4 mm Hg [37·4], p<0·0001), was little higher than premorbid levels (increase of 10·6 mm Hg vs 10-year mean premorbid level), and decreased only slightly during the first 24 h (mean decrease from <90 min to 24 h 13·6 mm Hg). By contrast with findings in ischaemic stroke, the mean first systolic blood pressure after intracerebral haemorrhage was substantially higher than premorbid levels (mean increase of 40·7 mm Hg, p<0·0001) and fell substantially in the first 24 h (mean decrease of 41·1 mm Hg; p=0·0007 for difference from decrease in ischaemic stroke). Mean systolic blood pressure also increased steeply in the days and weeks before intracerebral haemorrhage (regression p<0·0001) but not before ischaemic stroke. Consequently, the first acute-phase blood pressure reading after primary intracerebral haemorrhage was more likely than after ischaemic stroke to be the highest ever recorded (OR 3·4, 95% CI 2·3-5·2, p<0·0001). In patients with intracerebral haemorrhage seen within 90 min, the highest systolic blood pressure within 3 h of onset was 50 mm Hg higher, on average, than the maximum premorbid level whereas that after ischaemic stroke was 5·2 mm Hg lower (p<0·0001). INTERPRETATION Our findings suggest that systolic blood pressure is substantially raised compared with usual premorbid levels after intracerebral haemorrhage, whereas acute-phase systolic blood pressure after major ischaemic stroke is much closer to the accustomed long-term premorbid level, providing a potential explanation for why the risks and benefits of lowering blood pressure acutely after stroke might be expected to differ. FUNDING Wellcome Trust, Wolfson Foundation, UK Medical Research Council, Stroke Association, British Heart Foundation, National Institute for Health Research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15min on and 15min off) starting 45min after middle cerebral artery occlusion and lasting 4h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Concurrent cardiac diseases are frequent among elderly patients and invite simultaneous treatment to ensure an overall favourable patient outcome. Aim To investigate the feasibility of combined single-session percutaneous cardiac interventions in the era of transcatheter aortic valve implantation (TAVI). Methods This prospective, case–control study included 10 consecutive patients treated with TAVI, left atrial appendage occlusion and percutaneous coronary interventions. Some in addition had patent foramen ovale or atrial septal defect closure in the same session. The patients were matched in a 1:10 manner with TAVI-only cases treated within the same time period at the same institution regarding their baseline factors. The outcome was validated according to the Valve Academic Research Consortium (VARC) criteria. Results Procedural time (126±42 vs 83±40 min, p=0.0016), radiation time (34±8 vs 22±12 min, p=0.0001) and contrast dye (397±89 vs 250±105 mL, p<0.0001) were higher in the combined intervention group than in the TAVI-only group. Despite these drawbacks, no difference in the VARC endpoints was evident during the in-hospital period and after 30 days (VARC combined safety endpoint 32% for TAVI only and 20% for combined intervention, p=1.0). Conclusions Transcatheter treatment of combined cardiac diseases is feasible even in a single session in a high-volume centre with experienced operators.