879 resultados para green algae
Resumo:
1. Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium which can produce akinetes (reproductive spores) that on germinating can contribute to future populations. To further understand factors controlling the formation of these specialised cells, the effects of diurnal temperature fluctuations (magnitude and frequency), in combination with different light intensities and phosphorus concentrations were investigated under laboratory conditions. 2. Akinete differentiation was affected by the frequency of temperature fluctuations. Maximum akinete concentrations were observed in cultures that experienced multiple diurnal temperature fluctuations. 3. Akinete concentrations increased with increasing magnitude of temperature fluctuation. A maximum akinete concentration was achieved under multiple diurnal temperature fluctuations with a magnitude of 10degreesC (25degreesC to 15degreesC). 4. A fourfold increase in light intensity (25-100 mumol m(-2) s(-1)) resulted in an approximate 14-fold increase in akinete concentration. 5. High filterable reactive phosphorus (FRP) concentrations (> 70 mug L-1) in the medium, combined with a multiple diurnal temperature fluctuation of 10degreesC, supported the development of the highest akinete concentration.
Resumo:
Background: Case studies and anecdotal reports have documented a range of acute illnesses associated with exposure to cyanobacteria and their toxins in recreational waters. The epidemiological data to date are limited; we sought to improve on the design of some previously conducted studies in order to facilitate revision and refinement of guidelines for exposure to cyanobacteria in recreational waters. Methods: A prospective cohort study was conducted to investigate the incidence of acute symptoms in individuals exposed, through recreational activities, to low ( cell surface area < 2.4 mm(2)/mL), medium ( 2.4 - 12.0 mm(2)/mL) and high (> 12.0 mm(2)/mL) levels of cyanobacteria in lakes and rivers in southeast Queensland, the central coast area of New South Wales, and northeast and central Florida. Multivariable logistic regression analyses were employed; models adjusted for region, age, smoking, prior history of asthma, hay fever or skin disease ( eczema or dermatitis) and clustering by household. Results: Of individuals approached, 3,595 met the eligibility criteria, 3,193 (89%) agreed to participate and 1,331 (37%) completed both the questionnaire and follow-up interview. Respiratory symptoms were 2.1 (95% CI: 1.1 - 4.0) times more likely to be reported by subjects exposed to high levels of cyanobacteria than by those exposed to low levels. Similarly, when grouping all reported symptoms, individuals exposed to high levels of cyanobacteria were 1.7 ( 95% CI: 1.0 - 2.8) times more likely to report symptoms than their low-level cyanobacteria-exposed counterparts. Conclusion: A significant increase in reporting of minor self-limiting symptoms, particularly respiratory symptoms, was associated with exposure to higher levels of cyanobacteria of mixed genera. We suggest that exposure to cyanobacteria based on total cell surface area above 12 mm(2)/mL could result in increased incidence of symptoms. The potential for severe, life-threatening cyanobacteria-related illness is likely to be greater in recreational waters that have significant levels of cyanobacterial toxins, so future epidemiological investigations should be directed towards recreational exposure to cyanotoxins.
Resumo:
Fundamental analytical pyrolysis studies of biomass from Polar seaweeds, which exhibit a different biomass composition than terrestrial and micro-algae biomass were performed via thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass-spectrometry (Py-GC/MS). The main reason for this study is the adaptation of these species to very harsh environments making them an interesting source for thermo-chemical processing for bioenergy generation and production of biochemicals via intermediate pyrolysis. Several macroalgal species from the Arctic region Kongsfjorden, Spitsbergen/Norway (Prasiola crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea ramentacea, Odonthalia dentata, Phycodrys rubens, Sphacelaria plumosa) and from the Antarctic peninsula, Potter Cove King George Island (Gigartina skottsbergii, Plocamium cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena, Kallymenia antarctica) were investigated under intermediate pyrolysis conditions. TGA of the Polar seaweeds revealed three stages of degradation representing dehydration, devolatilization and decomposition of carbonaceous solids. The maximum degradation temperatures Prasiola crispa were observed within the range of 220-320 C and are lower than typically obtained by terrestrial biomass, due to divergent polysaccharide compositions. Biochar residues accounted for 33-46% and ash contents of 27-45% were obtained. Identification of volatile products by Py-GC/MS revealed a complexity of generated chemical compounds and significant differences between the species. A widespread occurrence of aromatics (toluene, styrene, phenol and 4-methylphenol), acids (acetic acid, benzoic acid alkyl ester derivatives, 2-propenoic acid esters and octadecanoic acid octyl esters) in pyrolysates was detected. Ubiquitous furan-derived products included furfural and 5-methyl-2-furaldehyde. As a pyran-derived compound maltol was obtained by one red algal species (P. rubens) and the monosaccharide d-allose was detected in pyrolysates in one green algal (P. crispa). Further unique chemicals detected were dianhydromannitol from brown algae and isosorbide from green algae biomass. In contrast, the anhydrosugar levoglucosan and the triterpene squalene was detected in a large number of pyrolysates analysed. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Hydroperiod, or the distribution, duration and timing of flooding affects both plant and animal distributions. The Florida Everglades is currently undergoing restoration that will result in altered hydroperiods. This study was conducted in Everglades National Park to document the variability in periphyton community structure and function between long and short hydroperiod Everglades marshes. Periphyton is an important primary producer and important food resource in the Everglades. Periphyton is also involved in marl soil formation and nutrient cycling. Although periphyton is an important component of the Everglades landscape, little is known about periphyton structural-functional variation between hydroperiods. ^ For this study diatoms, as well as fresh algae slides of diatoms, cyanobacteria and green algae were identified and enumerated. Short verse long hydroperiod soil and water column nutrients were compared. Short and long hydroperiod algal periphyton mat productivity rates were compared using BOD incubations. Experimental manipulations were performed to determine the effects of desiccation duration and rewetting on periphyton productivity, community structure, and nutrient flux. ^ Variation in periphyton community structure was significantly greater between hydroperiods than within hydroperiods. Short and long hydroperiod periphyton mats have the same algal species, it is the distribution and abundance that varies between hydroperiods. Long hydroperiod mats have greater diatom abundance while short hydroperiod mats have greater relative filamentous cyanobacterial abundance. ^ Long hydroperiod mats had greater net primary production (npp) than short hydroperiod mats. Short hydroperiod mats respond to rewetting more rapidly than do long hydroperiod mats. Dry short hydroperiod mats became net primary producers within 24 hours of rehydration. Increasing desiccation duration led to greater cyanobacterial abundance in long hydroperiod mats and decreased diatom abundance in both long and short hydroperiod mats. ^
Resumo:
The increased occurrence of cyanobacteria (blue-green algae) blooms and the production of associated cyanotoxins have presented a threat to drinking water sources. Among the most common types of cyanotoxins found in potable water are microcystins (MCs), a family of cyclic heptapeptides containing substrates. MCs are strongly hepatotoxic and known to initiate tumor promoting activity. The presence of sub-lethal doses of MCs in drinking water is implicated as one of the key risk factors for an unusually high occurrence of primary liver cancer. ^ A variety of traditional water treatment methods have been attempted for the removal of cyanotoxins, but with limited success. Advanced Oxidation Technologies (AOTs) are attractive alternatives to traditional water treatments. We have demonstrated ultrasonic irradiation and UV/H2O2 lead to the degradation of cyanotoxins in drinking water. These studies demonstrate AOTs can effectively degrade MCs and their associated toxicity is dramatically reduced. We have conducted detailed studies of different degradation pathways of MCs and conclude that the hydroxyl radical is responsible for a significant fraction of the observed degradation. Results indicate preliminary products of the sonolysis of MCs are due to the hydroxyl radical attack on the benzene ring and substitution and cleavage of the diene of the Adda peptide residue. AOTs are attractive methods for treatment of cyanotoxins in potable water supplies. ^ The photochemical transformation of MCs is important in the environmental degradation of MCs. Previous studies implicated singlet oxygen as a primary oxidant in the photochemical transformation of MCs. Our results indicate that singlet oxygen predominantly leads to degradation of the phycocyanin, pigments of blue green algae, hence reducing the degradation of MCs. The predominant process involves isomerization of the diene (6E to 6Z) in the Adda side chain via photosensitized isomerization involving the photoexcited phycocyanin. Our results indicate that photosensitized processes play a key role in the environmental fate and elimination of MCs in the natural waters. ^
Resumo:
We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site, decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacteria/coralline red algae complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the bay, as might occur during Everglades restoration, can shift microalgal community structure, which may subsequently alter food web support for upper trophic levels.
Resumo:
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.
Resumo:
Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS.
Resumo:
A high abundance of isoprenoid hydrocarbons, the botryococcenes, with carbon numbers from 32 to 34 were detected in the Florida Everglades freshwater wetlands. These compounds were present in varying amounts up to 106 μg/gdw in periphyton, 278 μg/gdw in floc, and 46 μg/gdw in soils. Their structures were determined based on comparison to standards, interpretation of their mass spectra and those of their hydrogenation products, and comparison of Kovats indexes to those reported in the literature. A total of 26 cyclic and acyclic botryococcenes with 8 skeletons were identified, including those with fewer degrees of unsaturation, which are proposed as early diagenetic derivatives from the natural products. This is the first report that botryococcenes occur in the Everglades freshwater wetlands. Their potential biogenetic sources from green algae and cyanobacteria were examined, but neither contained botryococcenes. Thus, the source implication of botryococcenes in this ecosystem needs further study.
Resumo:
A field experiment was employed in Florida Bay investigating the response of seagrass epiphyte communities to nitrogen (N) and phosphorus (P) additions. While most of the variability in epiphyte community structure was related to uncontrolled temporal and spatial environmental heterogeneity, P additions increased the relative abundance of the red algae–cyanobacterial complex and green algae, with a concomitant decrease in diatoms. When N was added along with P, the observed changes to the diatoms and the red algae–cyanobacterial complex were in the same direction as P-only treatments, but the responses were decreased in magnitude. Within the diatom community, species relative abundances, species richness, and diversity responded weakly to nutrient addition. P additions produced changes in diatom community structure that were limited to summer and were stronger in eastern Florida Bay than in the western bay. These changes were consistent with well-established temporal and spatial patterns of P limitation. Despite the significant change in community structure resulting from P addition, diatom communities from the same site and time, regardless of nutrient treatment, remained more similar to one another than to the diatom communities subject to identical nutrient treatments from different sites and times. Overall, epiphyte communities exhibited responses to P addition that were most evident at the division level.
Resumo:
Seagrass beds are the dominant benthic marine communities in the back reef environment of the Florida Keys. At a network of 30 permanent monitoring stations in this back reef environment, the seagrass Thalassia testudinum Banks & Soland. ex Koenig was the most common marine macrophyte, but the seagrasses Syringodium fi liforme Kuetz., and Halodule wrightii Aschers., as well as many taxa of macroalgae, were also commonly encountered. The calcareous green macroalgae, especially Halimeda spp. and Penicillus spp., were the most common macroalgae. The passage of Hurricane Georges on September 25, 1998 caused an immediate loss of 3% of the density of T. testudinum, compared to 19% of the S. fi liforme and 24% of the calcareous green algae. The seagrass beds at three of the stations were completely obliterated by the storm. Stations that had little to moderate sediment deposition recovered from the storm within 1 yr, while the station buried by 50 cm of sediment and the two stations that experienced substantial erosion had recovered very little during the 3 yrs after the storm. Early colonizers to these severely disturbed sites were calcareous green algae. Hurricanes may increase benthic macrophyte diversity by creating disturbed patches with the landscape, but moderate storm disturbance may actually reduce macrophyte diversity by removing the early successional species from mixed-species seagrass beds.
Biotic and abiotic determinants of intermediate-consumer trophic diversity in the Florida everglades
Resumo:
Food-web structure can shape population dynamics and ecosystem functioning and stability. We investigated the structure of a food-web fragment consisting of dominant intermediate consumers (fishes and crayfishes) in the Florida Everglades, using stable isotope analysis to quantify trophic diversity along gradients of primary production (periphyton), disturbance (marsh drying) and intermediate-consumer density (a possible indicator of competition). We predicted that trophic diversity would increase with resource availability and decrease after disturbance, and that competition could result in greater trophic diversity by favouring resource partitioning. Total trophic diversity, measured by niche area, decreased with periphyton biomass and an ordination axis representing several bluegreen algae species. Consumers’ basal resource diversity, estimated by δ13C values, was similarly related to algal community structure. The range of trophic levels (δ15N range) increased with time since the most recent drying and reflooding event, but decreased with intermediate-consumer density, and was positively related to the ordination axis reflecting increases in green algae and decreases in filamentous bluegreen algae. Our findings suggest that algal quality, independent of quantity, influences food-web structure and demonstrate an indirect role of nutrient enrichment mediated by its effects on periphyton palatability and biomass. These results reveal potential mechanisms for anthropogenic effects on Everglades communities.
Resumo:
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.
Resumo:
Cyanobacteria (blue-green algae) produce a diverse array of toxic or otherwise bioactive metabolites. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae, including mosquitoes. Compounds derived from cyanobacteria collected from the Florida Everglades and other Florida waterways were investigated as insecticides against the mosquito Aedes aegypti, a vector of dengue and yellow fever. Screening of cyanobacterial biomass revealed several strains that exhibited mosquito larvicidal activity. Guided via bioassay guided fractionation, a non-polar compound from Leptolyngbya sp. 21-9-3 was found to be the most active component. Characterization revealed the prospective compound to be a monounsaturated fatty acid with the molecular formula C16H30O2. This is the first evidence of mosquito larvicidal activity for this particular fatty acid. With larvicidal becoming more prevalent, fatty acids should be explored for future mosquito control strategies.^