965 resultados para geometric singular perturbation
Resumo:
The hydrodynamics of a free flapping foil is studied numerically. The foil undergoes a forced vertical oscillation and is free to move horizontally. The effect of chord-thickness ratio is investigated by varying this parameter while fixing other ones such as the Reynolds number, the density ratio, and the flapping amplitude. Three different flow regimes have been identified when we increase the chord-thickness ratio, i.e., left-right symmetry, back-and-forth chaotic motion, and unidirectional motion with staggered vortex street. It is observed that the chord-thickness ratio can affect the symmetry-breaking bifurcation, the arrangement of vortices in the wake, and the terminal velocity of the foil. The similarity in the symmetry-breaking bifurcation of the present problem to that of a flapping body under constraint is discussed. A comparison between the dynamic behaviors of an elliptic foil and a rectangular foil at various chord-thickness ratios is also presented.
Resumo:
420 p.
Resumo:
This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.
One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.
Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.
The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.