691 resultados para genistoid clade


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs. Methods: To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1. Results: Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4+ and CD8+ T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4+ and CD8+ T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ+ CD8+ T cells being Granzyme B+ and able to degranulate (CD107a+). Conclusions: These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceratocystis fimbriata was found sporulating in gray to black discolored areas on edible corms of Colocasia esculenta found in supermarkets in the states of São Paulo, Rio de Janeiro, Bahia, Rondônia and the Distrito Federal. In most cases the corms were grown in the state of São Paulo. The black rot appeared to occur post-harvest. Sequences of rDNA indicated that the Colocasia sp. isolates belong to the Latin American clade of the C. fimbriata complex, but the isolates were more aggressive than isolates from Ficus carica and Mangifera indica, in pseudopetioles of C. esculenta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incidence of nonmelanoma skin cancer (NMSC) is increasing. Ultraviolet (UV) –light is a major risk factor for the development of cutaneous SCC. Cutaneous SCCs that develop to chronic ulcers are known to progress and metastasize more easily than UV-induced SCCs. Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes which are suggested to have a role in cancer growth and invasion. The molecular background for progression of cutaneous SCC was examined by immunohistochemistry (IHC) using tissue samples of recessive dystrophic epidermolysis bullosa (RDEB) –associated SCC, sporadic UV-induced SCC, and SCC precursors. IHC studies using tissue microarray (TMA) technique revealed overexpression of MMP-7 and MMP-13 in SCC tumor cells. MMP-7 expression was enhanced especially in the SCC tumor cells of the RDEB –associated SCCs. Studies with SCC cell lines showed that tumor cell derived MMP-7 activated heparin binding epidermal growth factor –like growth factor (HB-EGF) which enhanced the growth of SCC tumor cells. Further, it was shown that type VII collagen (COL7) is expressed in sporadic SCC tumor cells. Interestingly, it was shown that SCC –associated MMP-13 is capable of cleaving COL7 in vitro. COL7 cleavage may have a role in the progression of cutaneous SCC. Studies on serine proteinase inhibitor gene family using SCC tumor cell gene array, quantitative real-time PCR, SCC cell lines, normal human epidermal keratinocytes and IHC of TMA samples showed that serine proteinase inhibitor clade A, member 1 (serpinA1, alpha-1-antitrypsin) is expressed and produced by human SCC tumor cells but not by normal keratinocytes. Moreover, serpinA1 expression was shown to correlate with the progression of cutaneous SCC using transformed HaCaT-cell lines and mouse chemically induced skin SCC model. SerpinA1 may serve as a novel biomarker for the progression of cutaneous SCC. This study elucidated putative mechanisms of the progression of cutaneous SCC and revealed novel biomarker candidates for the progression of SCC of the skin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate species level taxonomy and phylogenetic relationship among Thorea species in Brazil and other regions of the world using two molecular markers - RUBISCO large subunit plastid gene (rbcL) and nuclear small-subunit ribosomal DNA (SSU rDNA). Three samples of Thorea from Brazil (states of Mato Grosso do Sul and São Paulo) and one sample from Dominican Republic (DR) were sequenced. Analyses based on partial sequences of rbcL (1,282 bp) and complete sequences of SSU (1,752 bp) were essentially congruent and revealed that Thoreales formed a distinct monophyletic clade, which had two major branches with high support, representing the genera Thorea and Nemalionopsis. Thorea clade had four main branches with high support for all analyses, each one representing the species: 1) T. gaudichaudii C. Agardh from Asia (Japan and Philippines) - this clade occurred only in the rbcL analyses; 2) T. violacea Bory from Asia (Japan) and North America (U.S.A. and DR); 3) T. hispida (Thore) Desvaux from Europe (England) and Asia (Japan); 4) a distinct group with the three Brazilian samples (sequence identity: rbcL 97.2%, 1,246 bp; SSU 96.0-98.1%, 1,699-1,720 bp). The Brazilian samples clearly formed a monophyletic clade based on both molecular markers and was interpreted as a separate species, for which we resurrected the name T. bachmannii Pujals. Morphological and molecular evidences indicate that the Thoreales is well-resolved at ordinal and generic levels. In contrast, Thorea species recognized by molecular data require additional characters (e.g. reproductive and chromosome numbers) to allow consistent and reliable taxonomic circumscription aiming at a world revision based on molecular and morphological evidences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Morphological cladistic analysis of Pseudobombax Dugand (Malvaceae, Bombacoideae) and allied genera). Pseudobombax Dugand belongs to the family Malvaceae subfamily Bombacoideae and aggregates 29 species restricted to the Neotropics. A morphological cladistic analysis of Pseudobombax and allied genera was carried out to test the monophyly of the genus and to provide hypotheses on its phylogeny. Parsimony analyses were based on 40 morphological characters and 28 species, 14 belonging to Pseudobombax and 14 to other species of Bombacoideae, Matisieae (Malvoideae) and Ochromeae. Nine most parsimonious trees (144 steps, ci 0.40, ri 0.67) were produced when 10 multistate characters were taken as ordered while only two most parsimonious trees (139 steps, ci 0.41, ri 0.67) were obtained when all characters were considered as unordered. Pseudobombax monophyly had moderate bootstrap support, appearing as sister to a clade composed of the genera Bombacopsis Pittier and Pachira Aubl., or to the genus Bombax L. according to the analysis. The petiole widened at the apex and the leaflets not jointed to the petiole are probably synapomorphies of Pseudobombax. Three main clades were found in the genus: one characterised by petiolulated leaflets and 5-angular fruits, the other by pubescent leaves and calyx, and the other by reduction of the number of leaflets. The latter includes species endemic to the Brazilian semi-arid region also characterised by the absence of phalanges in the androecium. Interspecific affinities in Pseudobombax as well as the morphological evolution in Bombacoideae are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Täydellinen nimeke: Inneming van Tavasthus in Finlant, door den Graef van Apraxin etc. nevens de groote nederlage der Zweden, met verlies hunner Trommels en Velt tekenen, en een groot getal van Krygs benden; voorgevallen den 6 van Wynmaent 1713 = Tavasthusa in Finlandia expugnata a Comite Apraxino etc. cum magna clade Suecorum, et jactura tympanorum et vexillorum, multarumque copiarum militarium 6 die Oct: an: 1713.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assess the molecular epidemiology of HIV-1 in two neighboring cities located near the epicenter of the HIV-1 epidemics in Brazil (Santos and São Paulo), we investigated 83 HIV-1 strains obtained from samples collected in 1995 from intravenous drug users. The V3 through V5 region of the envelope of gp 120 was analyzed by heteroduplex mobility analysis. Of the 95 samples, 12 (12.6%) were PCR negative (6 samples from each group); low DNA concentration was the reason for non-amplification in half of these cases. Of the 42 typed cases from São Paulo, 34 (81%, 95% confidence limits 74.9 to 87.0%) were B and 8 (19%, 95% confidence limits 12.9 to 25.0%) were F, whereas of the 41 typed cases from Santos, 39 (95%, 95% confidence limits 91.6 to 98.4%) were B and 2 (5%, 95% confidence limits 1.6 to 8.4%) were C. We therefore confirm the relationship between clade F and intravenous drug use in São Paulo, and the presence of clade C in Santos. The fact that different genetic subtypes of HIV-1 are co-circulating indicates a need for continuous surveillance for these subtypes as well as for recombinant viruses in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases) are enzymes that hydrolyze pyrophosphate (PPi)which is produced as a byproduct in many important growth related processes e.g. in the biosynthesis of DNA, proteins and lipids. PPases can be either soluble or membranebound. Membrane-bound PPases (mPPases) are ion transporters that couple the energy released during PPi hydrolysis to Na+ or H+ transport. When I started the project, only three Na+-transporting mPPases were known to exist. In this study, I aimed to confirm if Na+-transport is a common function of mPPases. Furthermore, the amino acid residues responsible for determining the transporter specificity were unknown. I constructed a phylogenetic tree for mPPases and selected the representative bacterial and archaeal mPPases to be investigated. I expressed different prokaryotic mPPases in Escherichia coli, isolated these as inverted membrane vesicles and characterized their functions. In the first project I identified four new Na+-PPases, two K+-dependent H+-PPases and one K+-independent mPPase. The residues determining the transporter specificity were identified by site-directed mutagenesis. I showed that the conserved glutamate residues are important for specificity, though are not the only residues that influence it. This research clarified the ion transport specificities throughout the mPPase phylogenetic tree, and revealed that Na+ transport is a widespread function of mPPases. In addition, it became clear that the transporter specificity can be predicted from the amino acid sequence in combination with a phylogenetic analysis. In the second project, I identified a novel class of mPPases, which is capable of transporting both Na+ and H+ ions and is mainly found in bacteria of the human gastrointestinal tract. The physiological role of these novel enzymes may be to help the bacteria survive in the demanding conditions of the host. In the third project, I characterized the Chlorobium limicola Na+-PPase and found that this and related mPPases are able to transport H+ ions at subphysiological Na+ concentrations. In addition, the H+-transport activity was shown to be a common function of all studied Na+-PPases at low Na+ concentrations. I observed that mutating gate-lysine to asparagine eliminated the H+ but not the Na+ ion transport function, indicating the important role of the residue in the transport of H+. In the fourth project, I characterized the unknown and evolutionary divergent mPPase clade of the phylogenetic tree. The enzymes belonging to this clade are able to transport H+ ions and, based on their sequence, were expected to be K+- and Na+-independent. The sequences of membrane-bound PPase are usually highly conserved, but the enzymes belonging to this clade are more divergent and usually contain 100−150 extra amino acid residues compared to other known mPPases. Despite the vast sequence differences, these mPPases have the full set of important residues and, surprisingly, are regulated by Na+ and K+ ions. These enzymes are mainly of bacterial origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South American sea lion, Otaria flavescens, is widely distributed along the Pacific and Atlantic coasts of South America. However, along the Brazilian coast, there are only two nonbreeding sites for the species (Refúgio de Vida Silvestre da Ilha dos Lobos and Refúgio de Vida Silvestre do Molhe Leste da Barra do Rio Grande), both in Southern Brazil. In this region, the species is continuously under the effect of anthropic activities, mainly those related to environmental contamination with organic and inorganic chemicals and fishery interactions. This paper reports, for the first time, the genetic diversity of O. flavescens found along the Southern Brazilian coast. A 287-bp fragment of the mitochondrial DNA control region (D-loop) was analyzed. Seven novel haplotypes were found in 56 individuals (OFA1-OFA7), with OFA1 being the most frequent (47.54%). Nucleotide diversity was moderate (π = 0.62%) and haplotype diversity was relatively low (67%). Furthermore, the median joining network analysis indicated that Brazilian haplotypes formed a reciprocal monophyletic clade when compared to the haplotypes from the Peruvian population on the Pacific coast. These two populations do not share haplotypes and may have become isolated some time back. Further genetic studies covering the entire species distribution are necessary to better understand the biological implications of the results reported here for the management and conservation of South American sea lions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roles of novel biomarkers was studied in progression of cutaneous squamous cell carcinoma (cSCC) as the most common metastatic skin cancer. The incidence of cSCC is increasing worldwide due to lifestyle changes such as recreational exposure to sunlight and the aging of the population. Because of an emerging need for molecular markers for the progression of cSCC, we set our goal to characterize three distinct novel markers overexpressed in cSCC cells. Our results identified overexpression of serpin peptidase inhibitor clade A member 1 (SerpinA1), EphB2 and absent in melanoma 2 (AIM2) in cSCC cell lines compared with normal human epidermal keratinocytes (NHEKs). Immunohistochemical analysis of SerpinA1, EphB2 and AIM2 revealed abundant tumor cell-specific expression of cytoplasmic SerpinA1 and AIM2 and cytoplasmic and membranous EphB2 in cSCC tumors in vivo. The staining intensity of SerpinA1, EphB2 and AIM2 was significantly stronger in cSCC as compared with carcinoma in situ (cSCCIS) and actinic keratosis (AK). Tumor cell-associated SerpinA1 and EphB2 was noted in chemically induced mouse skin SCC, and the staining intensity was stronger in mouse cSCCs than in untreated skin. AIM2 staining intensity was significantly more abundant in cSCC of organ transplant recipients (OTR) than in sporadic cSCC in vivo. EphB2 knockdown resulted in inhibition of migration in cSCC cells. In addition, knockdown of EphB2 and AIM2 was found to inhibit the proliferation and invasion of cSCC cells and to delay the growth and vascularization of cSCC xenografts in vivo. Altogether, these findings identify SerpinA1 as a novel biomarker for cSCC. In addition, characterization of the roles of EphB2 and AIM2 in the progression of cSCC was implicated them as possible therapeutic targets for the treatment of cSCC particularly in unresectable and metastatic tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metarhizium is a soil-inhabiting fungus currently used as a biological control agent against various insect species, and research efforts are typically focused on its ability to kill insects. In section 1, we tested the hypothesis that species of Metarhizium are not randomly distributed in soils but show plant rhizosphere-specific associations. Results indicated an association of three Metarhizium species (Metarhizium robertsii, M. brunneum and M. guizhouense) with the rhizosphere of certain types of plant species. M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense, which was supported by in vitro experiments with grass root exudate. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types. In section 2, we explored the variation in the insect adhesin, Madl, and the plant adhesin, Mad2, in fourteen isolates of Metarhizium representing seven different species. Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions. Phylogenetic analysis of 5' EF-Ia, which is used for species identification, as well as Madl and Mad2 sequences demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1a than Madl. This suggests Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation. While other abiotic and biotic factors cannot be excluded in contributing to divergence, it appears that plant associations have been the driving factor causing divergence among Metarhizium species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.