958 resultados para genetic divergence
Resumo:
Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region.
Resumo:
To understand mechanisms structuring diversity in young adaptive radiations, quantitative and unbiased information about genetic and phenotypic diversity is much needed. Here, we present the first in-depth investigation of whitefish diversity in a Swiss lake, with continuous spawning habitat sampling in both time and space. Our results show a clear cline like pattern in genetics and morphology of populations sampled along an ecological depth gradient in Lake Neuchâtel. Divergent natural selection appears to be involved in shaping this cline given that trait specific P(ST)-values are significantly higher than F(ST)-values when comparing populations caught at different depths. These differences also tend to increase with increasing differences in depth, indicating adaptive divergence along a depth gradient, which persists despite considerable gene flow between adjacent demes. It however remains unclear, whether the observed pattern is a result of currently stable selection-gene flow balance, incipient speciation, or reverse speciation due to anthropogenic habitat alteration causing two formerly divergent species to collapse into a single gene pool.
Resumo:
More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last similar to 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Interspecific hybridization can generate transgressive hybrid phenotypes with extreme trait values exceeding the combined range of the parental species. Such variation can enlarge the working surface for natural selection, and may facilitate the evolution of novel adaptations where ecological opportunity exists. The number of quantitative trait loci fixed for different alleles in different species should increase with time since speciation. If transgression is caused by complementary gene action or epistasis, hybrids between more distant species should be more likely to display transgressive phenotypes. To test this prediction we collected data on transgression frequency from the literature, estimated genetic distances between the hybridizing species from gene sequences, and calculated the relationship between the two using phylogenetically controlled methods. We also tested if parental phenotypic divergence affected the occurrence of transgression. We found a highly significant positive correlation between transgression frequency and genetic distance in eudicot plants explaining 43% of the variance in transgression frequency. In total, 36% of the measured traits were transgressive. The predicted effect of time since speciation on transgressive segregation was unconfounded by the potentially conflicting effects of phenotypic differentiation between species. Our analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.
Resumo:
Genetic relationships among bacterial strains belonging to the genus Aeromonas were inferred from 16S rRNA, gyrB and rpoB gene sequences. Twenty-eight type or collection strains of the recognized species or subspecies and 33 Aeromonas strains isolated from human and animal specimens as well as from environmental samples were included in the study. As reported previously, the 16S rRNA gene sequence is highly conserved within the genus Aeromonas, having only limited resolution for this very tight group of species. Analysis of a 1.1 kb gyrB sequence confirmed that this gene has high resolving power, with maximal interspecies divergence of 15.2 %. Similar results were obtained by sequencing only 517 bp of the rpoB gene, which showed maximal interspecies divergence of 13 %. The topologies of the gyrB- and rpoB-derived trees were similar. The results confirm the close relationship of species within the genus Aeromonas and show that a phylogenetic approach including several genes is suitable for improving the complicated taxonomy of the genus.
Resumo:
Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P.a.axillaris, P.a.parodii and P.a.subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P.axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100000years, which is compatible with a divergence time between 35000 and 107000years ago between P.a.axillaris and P.a.parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P.a.axillaris and P.a.parodii in their contact zone.
Resumo:
Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.
Resumo:
The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecologi- cal speciation. Ecological speciation is well studied in parts of the native range of the three-spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving differ- ent stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajec- tories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known eco- logical relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.
Resumo:
The patterns of genomic divergence during ecological speciation are shaped by a combination of evolutionary forces. Processes such as genetic drift, local reduction of gene flow around genes causing reproductive isolation, hitchhiking around selected variants, variation in recombination and mutation rates are all factors that can contribute to the heterogeneity of genomic divergence. On the basis of 60 fully sequenced three-spined stickleback genomes, we explore these different mechanisms explaining the heterogeneity of genomic divergence across five parapatric lake and river population pairs varying in their degree of genetic differentiation. We find that divergent regions of the genome are mostly specific for each population pair, while their size and abundance are not correlated with the extent of genome-wide population differentiation. In each pair-wise comparison, an analysis of allele frequency spectra reveals that 25–55% of the divergent regions are consistent with a local restriction of gene flow. Another large proportion of divergent regions (38–75%) appears to be mainly shaped by hitchhiking effects around positively selected variants. We provide empirical evidence that alternative mechanisms determining the evolution of genomic patterns of divergence are not mutually exclusive, but rather act in concert to shape the genome during population differentiation, a first necessary step towards ecological speciation.
Resumo:
Although rapid phenotypic evolution during range expansion associated with colonization of contrasting habitats has been documented in several taxa, the evolutionary mechanisms that underlie such phenotypic divergence have less often been investigated. A strong candidate for rapid ecotype formation within an invaded range is the three-spine stickleback in the Lake Geneva region of central Europe. Since its introduction only about 140 years ago, it has undergone a significant expansion of its range and its niche, now forming phenotypically differentiated parapatric ecotypes that occupy either the pelagic zone of the large lake or small inlet streams, respectively. By comparing museum collections from different times with contemporary population samples, we here reconstruct the evolution of parapatric phenotypic divergence through time. Using genetic data from modern samples, we infer the underlying invasion history. We find that parapatric habitat-dependent phenotypic divergence between the lake and stream was already present in the first half of the twentieth century, but the magnitude of differentiation increased through time, particularly in antipredator defence traits. This suggests that divergent selection between the habitats occurred and was stable through much of the time since colonization. Recently, increased phenotypic differentiation in antipredator defence traits likely results from habitat-dependent selection on alleles that arrived through introgression from a distantly related lineage from outside the Lake Geneva region. This illustrates how hybridization can quickly promote phenotypic divergence in a system where adaptation from standing genetic variation was constrained.
Resumo:
When genetic constraints restrict phenotypic evolution, diversification can be predicted to evolve along so-called lines of least resistance. To address the importance of such constraints and their resolution, studies of parallel phenotypic divergence that differ in their age are valuable. Here, we investigate the parapatric evolution of six lake and stream threespine stickleback systems from Iceland and Switzerland, ranging in age from a few decades to several millennia. Using phenotypic data, we test for parallelism in ecotypic divergence between parapatric lake and stream populations and compare the observed patterns to an ancestral-like marine population. We find strong and consistent phenotypic divergence, both among lake and stream populations and between our freshwater populations and the marine population. Interestingly, ecotypic divergence in low-dimensional phenotype space (i.e. single traits) is rapid and seems to be often completed within 100 years. Yet, the dimensionality of ecotypic divergence was highest in our oldest systems and only there parallel evolution of unrelated ecotypes was strong enough to overwrite phylogenetic contingency. Moreover, the dimensionality of divergence in different systems varies between trait complexes, suggesting different constraints and evolutionary pathways to their resolution among freshwater systems.
Resumo:
Understanding the genetic background of invading species can be crucial information clarifying why they become invasive. Intraspecific genetic admixture among lineages separated in the native ranges may promote the rate and extent of an invasion by substantially increasing standing genetic variation. Here we examine the genetic relationships among threespine stickleback that recently colonized Switzerland. This invasion results from several distinct genetic lineages that colonized multiple locations and have since undergone range expansions, where they coexist and admix in parts of their range. Using 17 microsatellites genotyped for 634 individuals collected from 17 Swiss and two non-Swiss European sites, we reconstruct the invasion of stickleback and investigate the potential and extent of admixture and hybridization among the colonizing lineages from a population genetic perspective. Specifically we test for an increase in standing genetic variation in populations where multiple lineages coexist. We find strong evidence of massive hybridization early on, followed by what appears to be recent increased genetic isolation and the formation of several new genetically distinguishable populations, consistent with a hybrid ‘superswarm’. This massive hybridization and population formation event(s) occurred over approximately 140 years and likely fuelled the successful invasion of a diverse range of habitats. The implications are that multiple colonizations coupled with hybridization can lead to the formation of new stable genetic populations potentially kick-starting speciation and adaptive radiation over a very short time.
Resumo:
Differences in how organisms modify their environment can evolve rapidly and might influence adaptive population divergence [1, 2]. In a common garden experiment in aquatic mesocosms, we found that adult stickleback from a recently diverged pair of lake and stream populations had contrasting effects on ecosystem metrics. These modifications were caused by both genetic and plastic differences between populations and were sometimes comparable in magnitude to those caused by the presence/ absence of stickleback. Lake and streamfish differentially affected the biomass of zooplankton and phytoplankton, the concentration of phosphorus, and the abundance of several prey (e.g., copepods) and non-prey (e.g., cyanobacteria) species. The adult mediated effects on mesocosm ecosystems influenced the survival and growth of a subsequent generation of juvenile stickleback reared in the same mesocosms. The prior presence of adults decreased the overall growth rate of juveniles, and the prior presence of stream adults lowered overall juvenile survival. Among the survivors, lake juveniles grew faster than co-occurring stream juveniles, except in mesocosm ecosystems previously modified by adult lake fish that were reared on plankton. Overall, our results provide evidence for reciprocal interactions between ecosystem dynamics and evolutionary change (i.e., eco-evolutionary feedbacks) in the early stages of adaptive population divergence.
Resumo:
All cells must have the ability to deal with a variety of environmental stresses. Failure to correctly adapt to and/or protect against adverse stress conditions can lead to cell death. In humans, stress response defects have been linked to a number of neurodegenerative diseases and cancer, underscoring the importance of developing a fundamental understanding of the eukaryotic stress response.^ In an effort to characterize cellular response to high temperature stress, I identified and described one member of a novel gene family— RTR1. I show that the RTR1 gene and its protein product genetically and biochemically interact with core subunits of the RNA polymerase II enzyme. Appropriately, loss of RTR1 results in defective transcription from multiple promoters. These data provide evidence that Rtr1, which is essential under stress conditions, acts as a key regulator of transcription.^ In addition to transcriptional regulation, cells deal with many stressors by inducing molecular chaperones. Molecular chaperones are ubiquitous in all living cells and bind unfolded or damaged proteins and catalyze refolding or degradation. Hsp90 is a unique chaperone because it targets specific clients—typically signaling proteins—for maturation. While it has been shown that Sse1, the yeast Hsp110, is a critical regulator of the Hsp90 chaperone cycle, this work describes the molecular basis for that regulation. I show that Sse1 modulates Hsp90 function through regulation of Hsp70 nucleotide exchange. Further, Hsp110-type nucleotide exchange factors (NEFs) appear to have a specific role in modulating Hsp90 function in this manner. Finally, in addition to Hsp110, the eukaryotic cytosol contains two other types of Hsp70 NEF: Snl1 (BAG-domain protein) and Fes1 (HspBP1-like protein). I investigated the cellular roles of these NEFs to better understand the reason that eukaryotic cells contain three distinct protein families that perform the same biochemical function. I show that while cytsolic Hsp70 NEFs have some degree of functional overlap, they also exhibit striking divergence. Taken together, the work presented in this dissertation provides a more detailed understanding of the eukaryotic stress response. ^
Resumo:
The taxonomy of Antarctic fishes has been predominantly based on morphological characteristics rather than on genetic criteria. A typical example is the Notothenia group, which includes N. coriiceps Richardson, 1844, N. neglecta Nybelin, 1951 and N. rossii Richardson, 1844. The Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to determine whether N. coriiceps Richardson, 1844 and N. neglecta Nybelin, 1951 are different or whether they are the same species with morphological, physiological and behavioural variability. N. rossii was used as control. Mitochondrial DNA (mtDNA) was isolated from muscle specimens of N. coriiceps Richardson, 1844, N. neglecta Nybelin, 1951 and N. rossii, which were collected in Admiralty Bay, King George Island. The DNA was used to amplify a fragment (690 base pairs) of the mitochondrial gene coding region of NADH dehydrogenase subunit 2. Further, the amplicon was digested with the following restriction enzymes: DdeI, HindIII and RsaI. The results showed a variation of the digestion pattern of the fragment amplified between N. rossii, and N. coriiceps Richardson, 1844 or N. neglecta Nybelin, 1951. However, no differences were found between N. coriiceps Richardson, 1844 and N. neglecta Nybelin, 1951, on the grounds of the same genetic pattern shown by the two fish.