988 resultados para genetic biodiversity
Resumo:
We show, using the PDR1 element of pea, that dispersed repeated sequences of moderate copy number can be used simply and efficiently to generate markers linked to a trait of interest. Inspection of hybridization patterns of repeated sequences to DNA mixtures of pooled genotypes is a sensitive way of detecting such markers. The large number of bands in tracks of digests of these mixtures allows the simultaneous sampling of loci at many places in the genome, and the many unlinked loci serve as internal controls. It is also shown that intensity ratios calculated from these band differences can be used to give a rough estimate of linkage distance.
Resumo:
A DNA sequence between two legumin genes in Pisum is a member of the copia-like class of retrotransposons and represents one member of a polymorphic and heterogeneous dispersed repeated sequence family in Pisum. This sequence can be exploited in genetic studies either by RFLP analysis where several markers can be scored together, or the segregation of individual elements can be followed after PCR amplification of specific members.
Resumo:
We have compared physical and genetic maps of the region around the legJ gene in pea. In this vicinity there are four B-type legumin genes, arranged as two close pairs. The detection of a recombination event within this gene cluster allows the orientation of this group of genes within the surrounding linkage group to be determined. The relationship between physical and genetic distances in this region is discussed, as are the implications of this for relating physical and genetic maps elsewhere in the pea genome.
Resumo:
A cDNA encoding the chloroplast/mitochondrial form of glutathione reductase (GR:EC 1,6,4,2) from pea (Pisum sativum L.) was used to map a single GR locus, named GORI. In two domesticated genotypes of pea (cv, Birte and JI 399) it is likely that the GORI locus contains a single gene. However, in a semi-domesticated land race of pea sequences were detected but closely related sets of GR gene sequences were in JI 281 represent either a second intact gene or a partial or pseudogene copy. A GR gene was cloned from ev. Birte, sequenced and its structure analysed. No features of the transcription or structure of the gene suggested a mechanism for generating any more than one form of . From these data plus previously published biochemical evidence was suggested a second, distinct gene encoding for the cytosolic form of GR should be present in peas. The GORI-encoded GR mRNA can be detected in all main organs of the plant and no alternative spliced species was present which could perhaps account for the generation of multiple isoforms of GR. The mismatch between the number of charge-separable isoforms in pea and the proposed number suggests that different GR isoforms arise by some form of post-transnational modification.
Resumo:
SPARC (secreted protein acidic and rich in cysteine)/ osteonectin/BM-40 is a matricellular protein implicated in development, cell transformation and tumorigenesis. We have examined the role of SPARC in cell transformation induced chemically with 7,12-dimethylbenz[a]anthracene (DMBA) and 12- tetradecanoylphorbol-13-acetate (TPA) in embryonic fibroblasts and in the skin of mice. Embryonic fibroblasts from SPARCnull mice showed increases in cell proliferation, enhanced sensitivity to DMBA and a higher number of DMBA/TPA-induced transformation foci. The number of DMBA-DNA adducts was 9 times higher in SPARCnull fibroblasts and their stability was lower than wild-type fibroblasts, consistent with a reduction in excision repair cross-complementing 1 the nucleotide excision repair enzyme in these cells. The SPARCnull mice showed an increase in both the speed and number of papillomas forming after topical administration of DMBA/TPA to the skin. These papillomas showed reduced growth and reduced progression to a more malignant phenotype, indicating that the effect of SPARC on tumorigenesis depends upon the transformation stage and/or tissue context. These data reinforce a growing number of observations in which SPARC has shown opposite effects on different tumor types/stages.
Resumo:
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Resumo:
The Galapagos archipelago is characterized by a high degree of endemism across many taxa, linked to the archpelago's oceanic origin and distance from other colonizing land masses. A population of ~ 500 American Flamingos (Phoenicopterus ruber) resides in Galapagos, which is thought to share an historical origin with the American Flamingo currently found in the Caribbean region. Genetic and phenotypic parameters in American Flamingos from Galapagos and from the Caribbean were investigated. Microsatellite and microchondrial DNA markers data showed that the American Flamingo population in Galapagos differs genetically from that in the Caribbean. American Flamingos in Galapagos form a clade which differs by a single common nucleotide substitution from American Flamingos in the Caribbean. The genetic differentiation is also evident from nuclear DNA in that microsatellite data reveal a number of private alleles for the American Flamingo in Galapagos. Analysis of skeletal measurements showed that American Flamingos in Galapagos are smaller than those in the Caribbean primarily due to shorter tarsus length, and differences in body shape sexual dimorphism. American Flamingo eggs from Galapagos have smaller linear dimensions and volumes than those from the Caribbean. The findings are consistent with reproductive isolation of American Flamingo population in Galapagos.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.
Resumo:
Chloroquine-resistant Plasmodium falciparum was highly prevalent in Hainan, China, in the 1970s. Twenty-five years after cessation of chloroquine therapy, the prevalence of P. falciparum wild-type Pfcrt alleles has risen to 36% (95% confidence interval, 22.1 to 52.4%). The diverse origins of wild-type alleles indicate that there was no genetic bottleneck caused by high chloroquine resistance.
Resumo:
Potential conflicts exist between biodiversity conservation and climate-change mitigation as trade-offs in multiple-use land management. This study aims to evaluate public preferences for biodiversity conservation and climate-change mitigation policy considering respondents’ uncertainty on their choice. We conducted a choice experiment using land-use scenarios in the rural Kushiro watershed in northern Japan. The results showed that the public strongly wish to avoid the extinction of endangered species in preference to climate-change mitigation in the form of carbon sequestration by increasing the area of managed forest. Knowledge of the site and the respondents’ awareness of the personal benefits associated with supporting and regulating services had a positive effect on their preference for conservation plans. Thus, decision-makers should be careful about how they provide ecological information for informed choices concerning ecosystem services tradeoffs. Suggesting targets with explicit indicators will affect public preferences, as well as the willingness of the public to pay for such measures. Furthermore, the elicited-choice probabilities approach is useful for revealing the distribution of relative preferences for incomplete scenarios, thus verifying the effectiveness of indicators introduced in the experiment.
Resumo:
Since the inception of the UN Convention on Biological Diversity (CBD) in 1992, little progress has been achieved in terms of involving the business community in protecting biological diversity worldwide. This article assesses the current activities of US Fortune 500 companies with respect to global biodiversity protection and the goals of the CBD. Data and information collected from 500 companies within eight major industrial sectors were further categorized at the company level to assess each company's involvement in global biodiversity protection. Our findings show that although companies' business profiles highly influence their decision-making process regarding the adoption of biodiversity protection policies and measures, their revenue profiles are less influential. We show that despite generating low revenues, companies in the utility sector are more active in the adoption of biodiversity protection policy than those in the financial sector, which generate high revenues. This study also demonstrates that companies must be convinced of the major effects of biodiversity loss on their bottom lines to be motivated to protect biological diversity. Companies' business and business-related risk profiles can also influence the adoption of biodiversity protection policies within the company. The study further demonstrates that a measurable biodiversity impact indicator is necessary for the companies to get seriously involved in the mitigation action. Finally, this study proposes a three-step biodiversity loss mitigation action framework that is drawn upon the assessment of the 500 companies that can contribute to develop an elaborative framework of business sector-specific mitigation plan. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Citizen science projects have demonstrated the advantages of people with limited relevant prior knowledge participating in research. However, there is a difference between engaging the general public in a scientific project and entering an established expert community to conduct research. This paper describes our ongoing acoustic biodiversity monitoring collaborations with the bird watching community. We report on findings gathered over six years from participation in bird walks, observing conservation efforts, and records of personal activities of experienced birders. We offer an empirical study into extending existing protocols through in-context collaborative design involving scientists and domain experts.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.