819 resultados para fuzzy linear systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A necessidade de obter solução de grandes sistemas lineares resultantes de processos de discretização de equações diferenciais parciais provenientes da modelagem de diferentes fenômenos físicos conduz à busca de técnicas numéricas escaláveis. Métodos multigrid são classificados como algoritmos escaláveis.Um estimador de erros deve estar associado à solução numérica do problema discreto de modo a propiciar a adequada avaliação da solução obtida pelo processo de aproximação. Nesse contexto, a presente tese caracteriza-se pela proposta de reutilização das estruturas matriciais hierárquicas de operadores de transferência e restrição dos métodos multigrid algébricos para acelerar o tempo de solução dos sistemas lineares associados à equação do transporte de contaminantes em meio poroso saturado. Adicionalmente, caracteriza-se pela implementação das estimativas residuais para os problemas que envolvem dados constantes ou não constantes, os regimes de pequena ou grande advecção e pela proposta de utilização das estimativas residuais associadas ao termo de fonte e à condição inicial para construir procedimentos adaptativos para os dados do problema. O desenvolvimento dos códigos do método de elementos finitos, do estimador residual e dos procedimentos adaptativos foram baseados no projeto FEniCS, utilizando a linguagem de programação PYTHONR e desenvolvidos na plataforma Eclipse. A implementação dos métodos multigrid algébricos com reutilização considera a biblioteca PyAMG. Baseado na reutilização das estruturas hierárquicas, os métodos multigrid com reutilização com parâmetro fixo e automática são propostos, e esses conceitos são estendidos para os métodos iterativos não-estacionários tais como GMRES e BICGSTAB. Os resultados numéricos mostraram que o estimador residual captura o comportamento do erro real da solução numérica, e fornece algoritmos adaptativos para os dados cuja malha retornada produz uma solução numérica similar à uma malha uniforme com mais elementos. Adicionalmente, os métodos com reutilização são mais rápidos que os métodos que não empregam o processo de reutilização de estruturas. Além disso, a eficiência dos métodos com reutilização também pode ser observada na solução do problema auxiliar, o qual é necessário para obtenção das estimativas residuais para o regime de grande advecção. Esses resultados englobam tanto os métodos multigrid algébricos do tipo SA quanto os métodos pré-condicionados por métodos multigrid algébrico SA, e envolvem o transporte de contaminantes em regime de pequena e grande advecção, malhas estruturadas e não estruturadas, problemas bidimensionais, problemas tridimensionais e domínios com diferentes escalas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Includes bibliographical references (p. 58-59)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Includes index.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we explore the practical use of neural networks for controlling complex non-linear systems. The system used to demonstrate this approach is a simulation of a gas turbine engine typical of those used to power commercial aircraft. The novelty of the work lies in the requirement for multiple controllers which are used to maintain system variables in safe operating regions as well as governing the engine thrust.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A very fast heuristic iterative method of projection on simplicial cones is presented. It consists in solving two linear systems at each step of the iteration. The extensive experiments indicate that the method furnishes the exact solution in more then 99.7 percent of the cases. The average number of steps is 5.67 (we have not found any examples which required more than 13 steps) and the relative number of steps with respect to the dimension decreases dramatically. Roughly speaking, for high enough dimensions the absolute number of steps is independent of the dimension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis demonstrates that the use of finite elements need not be confined to space alone, but that they may also be used in the time domain, It is shown that finite element methods may be used successfully to obtain the response of systems to applied forces, including, for example, the accelerations in a tall structure subjected to an earthquake shock. It is further demonstrated that at least one of these methods may be considered to be a practical alternative to more usual methods of solution. A detailed investigation of the accuracy and stability of finite element solutions is included, and methods of applications to both single- and multi-degree of freedom systems are described. Solutions using two different temporal finite elements are compared with those obtained by conventional methods, and a comparison of computation times for the different methods is given. The application of finite element methods to distributed systems is described, using both separate discretizations in space and time, and a combined space-time discretization. The inclusion of both viscous and hysteretic damping is shown to add little to the difficulty of the solution. Temporal finite elements are also seen to be of considerable interest when applied to non-linear systems, both when the system parameters are time-dependent and also when they are functions of displacement. Solutions are given for many different examples, and the computer programs used for the finite element methods are included in an Appendix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit -the upper bound of regeneration efficiency -is derived. © 2014 Macmillan Publishers Limited. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research partially supported by INTAS grant 97-1644

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are authentication models which use passwords, keys, personal identifiers (cards, tags etc) to authenticate a particular user in the authentication/identification process. However, there are other systems that can use biometric data, such as signature, fingerprint, voice, etc., to authenticate an individual in a system. In another hand, the storage of biometric can bring some risks such as consistency and protection problems for these data. According to this problem, it is necessary to protect these biometric databases to ensure the integrity and reliability of the system. In this case, there are models for security/authentication biometric identification, for example, models and Fuzzy Vault and Fuzzy Commitment systems. Currently, these models are mostly used in the cases for protection of biometric data, but they have fragile elements in the protection process. Therefore, increasing the level of security of these methods through changes in the structure, or even by inserting new layers of protection is one of the goals of this thesis. In other words, this work proposes the simultaneous use of encryption (Encryption Algorithm Papilio) with protection models templates (Fuzzy Vault and Fuzzy Commitment) in identification systems based on biometric. The objective of this work is to improve two aspects in Biometric systems: safety and accuracy. Furthermore, it is necessary to maintain a reasonable level of efficiency of this data through the use of more elaborate classification structures, known as committees. Therefore, we intend to propose a model of a safer biometric identification systems for identification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.