992 resultados para function space
Resumo:
Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.
Resumo:
beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.
Resumo:
Creatine (CR) supplementation is commonly used by athletes. However, its effects on renal function remain controversial. The aim of this study was to evaluate the effects of creatine supplementation on renal function in healthy sedentary males (18-35 years old) submitted to exercise training. A randomized, double-blind, placebo-controlled trial was performed. Subjects (n = 18) were randomly allocated to receive treatment with either creatine (CR) (similar to 10 g day(-1) over 3 months) or placebo (PL) (dextrose). All subjects undertook moderate intensity aerobic training, in three 40-min sessions per week, during 3 months. Serum creatinine, serum and urinary sodium and potassium were determined at baseline and at the end of the study. Cystatin C was assessed prior to training (PRE), after 4 (POST 4) and 12 weeks (POST 12). Cystatin C levels (mg L-1) (PRE CR: 0.82 +/- 0.09; PL: 0.88 +/- 0.07 vs. POST 12 CR: 0.71 +/- 0.06; PL: 0.75 +/- 0.09, P = 0.0001) were decreased over time, suggesting an increase in glomerular filtration rate. Serum creatinine decreased with training in PL but was unchanged with training in CR. No significant differences were observed within or between groups in other parameters investigated. The decrease in cystatin C indicates that high-dose creatine supplementation over 3 months does not provoke any renal dysfunction in healthy males undergoing aerobic training. In addition, the results suggest that moderate aerobic training per se may improve renal function.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Study design: This is cross-sectional study. Objectives: The aim of this study is to investigate the cardiac structure and function of subjects with spinal cord injury (SCI) and the impact of metabolic, hemodynamic and inflammatory factors on these parameters. Setting: Sao Paulo, Brazil. Methods: Sixty-five nondiabetic, nonhypertensive, sedentary, nonsmoker men (34 with SCI and 31 healthy subjects) were evaluated by medical history, anthropometry, laboratory tests, analysis of hemodynamic and inflammatory parameters and echocardiography. Results: Subjects with SCI had lower systolic blood pressure and higher levels of C-reactive protein and tumor necrosis factor receptors than the healthy ones. Echocardiography data showed that the SCI group presented similar left ventricular (LV) structural and systolic parameters, but lower initial diastolic velocity (Em) (9.2 +/- 0.5 vs 12.3 +/- 0.5 cm s(-1); P<0.001) and higher peak early inflow velocity (E)/Em ratio (7.7 +/- 0.5 vs 6.1 +/- 0.3; P = 0.009) compared with the able-bodied group, even after adjustment for systolic blood pressure and C-reactive protein levels. Furthermore, injured subjects with E/Em >8 had lower peak spectral longitudinal contraction (Sm) (9.0 +/- 0.7 vs 11.6 +/- 0.4cm s(-1); P<0.001) and cardiac output (4.2 +/- 0.2 vs 5.0 +/- 0.21 min(-1); P = 0.029), as well as higher relative wall thickness (0.38 +/- 0.01 vs 0.35 +/- 0.01; P = 0.005), than individuals with SCI with E/Em<8, but similar age, body mass index, blood pressure, injury level, metabolic parameters and inflammatory marker levels. Conclusion: Subjects with SCI presented impaired LV diastolic function in comparison with able-bodied ones. Moreover, worse LV diastolic function was associated with a pattern of LV concentric remodeling and subclinical decreases in systolic function among injured subjects. Overall, these findings might contribute to explain the increased cardiovascular risk reported for individuals with SCI. Spinal Cord (2011) 49, 65-69; doi: 10.1038/sc.2010.88; published online 27 July 2010
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
Resumo:
The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle`s cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new cryptographic hash function Whirlwind is presented. We give the full specification and explain the design rationale. We show how the hash function can be implemented efficiently in software and give first performance numbers. A detailed analysis of the security against state-of-the-art cryptanalysis methods is also provided. In comparison to the algorithms submitted to the SHA-3 competition, Whirlwind takes recent developments in cryptanalysis into account by design. Even though software performance is not outstanding, it compares favourably with the 512-bit versions of SHA-3 candidates such as LANE or the original CubeHash proposal and is about on par with ECHO and MD6.
Resumo:
This paper addresses the development of several alternative novel hybrid/multi-field variational formulations of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework of the complementary energy-based formulations, a Legendre transformation is used to introduce the complementary energy density in the variational statements as a function of stresses only. The corresponding variational principles are shown to feature stationarity within the framework of the boundary-value problem. Both weak and linearized weak forms of the principles are presented. The main features of the principles are highlighted, giving special emphasis to their relationships from both theoretical and computational standpoints. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]
Resumo:
This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.
Resumo:
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work discusses the determination of the breathing patterns in time sequence of images obtained from magnetic resonance (MR) and their use in the temporal registration of coronal and sagittal images. The registration is made without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. The real movement of the lung has never been seen directly, as it is totally dependent on its surrounding muscles and collapses without them. The visualization of the lung in motion is an actual topic of research in medicine. The lung movement is not periodic and it is susceptible to variations in the degree of respiration. Compared to computerized tomography (CT), MR imaging involves longer acquisition times and it is preferable because it does not involve radiation. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three-dimensional space. The registration is based on the analysis of this intersection segment. A time sequence of this intersection segment can be stacked, defining a two-dimension spatio-temporal (2DST) image. The algorithm proposed in this work can detect asynchronous movements of the internal lung structures and lung surrounding organs. It is assumed that the diaphragmatic movement is the principal movement and all the lung structures move almost synchronously. The synchronization is performed through a pattern named respiratory function. This pattern is obtained by processing a 2DST image. An interval Hough transform algorithm searches for synchronized movements with the respiratory function. A greedy active contour algorithm adjusts small discrepancies originated by asynchronous movements in the respiratory patterns. The output is a set of respiratory patterns. Finally, the composition of coronal and sagittal image pairs that are in the same breathing phase is realized by comparing of respiratory patterns originated from diaphragmatic and upper boundary surfaces. When available, the respiratory patterns associated to lung internal structures are also used. The results of the proposed method are compared with the pixel-by-pixel comparison method. The proposed method increases the number of registered pairs representing composed images and allows an easy check of the breathing phase. (C) 2010 Elsevier Ltd. All rights reserved.