923 resultados para freshwater supply to sea island
Resumo:
Desde finales de los 70 la piratería se convirtió en un problema para Nigeria. Con el tiempo adquirió características del crimen organizado y en 2010 se transformó en un problema transnacional, afectando a Estados del golfo de Guinea. Así, a través de una base conceptual, el estudio de caso concluyó que los factores internos –como la pobreza, debilidad estatal y marginalización- y externos –siendo ellos la falta de políticas internas destinadas a las aguas y la ausencia de estrategias marítimas en la región- de la piratería, crearon una dinámica para que dicha actividad se convirtiera en una amenaza a la seguridad marítima del golfo de Guinea, tomando como referencia a Benín y Togo. Siguiendo la línea argumentativa, se demuestra que la búsqueda de una solución a la delincuencia marítima ha generado interacciones de seguridad que sugieren las primeras fases de un posible complejo de seguridad regional.
Resumo:
The population dynamics of long-lived birds are thought to be very sensitive to changes in adult survival. However, where natal philopatry is low, recruitment from the larger metapopulation may have the strongest effect on population growth rate even in long-lived species. Here, we illustrate such a situation where changes in a seabird colony size appeared to be the consequence of changes in recruitment. We studied the population dynamics of a declining colony of Ancient Murrelets (Synthliboramphus antiquus) at East Limestone Island, British Columbia. During 1990-2010, Ancient Murrelet chicks were trapped at East Limestone Island while departing to sea, using a standard trapping method carried on throughout the departure period. Adult murrelets were trapped while departing from the colony during 1990-2003. Numbers of chicks trapped declined during 1990-1995, probably because of raccoon predation, increased slightly from 1995-2000 and subsequently declined again. Reproductive success was 30% lower during 2000-2003 than in earlier years, mainly because of an increase in desertions. The proportion of nonbreeders among adult birds trapped at night also declined over the study period. Mortality of adult birds, thought to be mainly prebreeders, from predators more than doubled over the same period. Apparent adult survival of breeders remained constant during 1991-2002 once the first year after banding was excluded, but the apparent survival rates in the first year after banding fell and the survival of birds banded as chicks to age three halved over the same period. A matrix model of population dynamics suggested that even during the early part of the study immigration from other breeding areas must have been substantial, supporting earlier observations that natal philopatry in this species is low. The general colony decline after 2000 probably was related to diminished recruitment, as evidenced by the lower proportion of nonbreeders in the trapped sample. Hence the trend is determined by the recruitment decisions of externally reared birds, rather than demographic factors operating on the local breeding population, an unusual situation for a colonial marine bird. Because of the contraction in the colony it may now be subject to a level of predation pressure from which recovery will be impossible without some form of intervention.
Resumo:
In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections.
Resumo:
Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (20 km) dynamic ice sheet model has been coupled to the third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model that, in turn, can alter the future climate through changes in orography, surface albedo, and freshwater input to the model ocean. At the start of the main experiment the atmospheric carbon dioxide concentration was increased to 4 times the preindustrial level and held constant for 3000 yr. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximately 7 m to global average sea level, causing a peak rate of sea level rise of 5 mm yr-1 early in the simulation. The effect of ice sheet depletion on global and regional climate has been examined and it was found that apart from the sea level rise, the long-term effect on global climate is small. However, there are some significant regional climate changes that appear to have reduced the rate at which the ice sheet ablates.
Resumo:
One of the largest contributions to biologically available nitrogen comes from the reduction of N-2 to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in return they receive ammonia. However, metabolic exchange must be more complex, because effective N-2 fixation by Rhizobium leguminosarum bv viciae bacteroids requires either one of two broad-specificity amino acid ABC transporters (Aap and Bra). It was proposed that amino acids cycle between plant and bacteroids, but the model was unconstrained because of the broad solute specificity of Aap and Bra. Here, we constrain the specificity of Bra and ectopically express heterologous transporters to demonstrate that branched-chain amino acid (LIV) transport is essential for effective N-2 fixation. This dependence of bacteroids on the plant for LIV is not due to their known down-regulation of glutamate synthesis, because ectopic expression of glutamate dehydrogenase did not rescue effective N-2 fixation. Instead, the effect is specific to LIV and is accompanied by a major reduction in transcription and activity of LIV biosynthetic enzymes. Bacteroids become symbiotic auxotrophs for LIV and depend on the plant for their supply. Bacteroids with aap bra null mutations are reduced in number, smaller, and have a lower DNA content than wild type. Plants control LIV supply to bacteroids, regulating their development and persistence. This makes it a critical control point for regulation of symbiosis. MICROBIOLOGY
Resumo:
Aim The Mediterranean region is a species-rich area with a complex geographical history. Geographical barriers have been removed and restored due to sea level changes and local climatic change. Such barriers have been proposed as a plausible mechanism driving the high levels of speciation and endemism in the Mediterranean basin. This raises the fundamental question: is allopatric isolation the mechanism by which speciation occurs? This study explores the potential driving influence of palaeo-geographical events on the speciation of Cyclamen (Myrsinaceae), a group with most species endemic to the Mediterranean region. Cyclamen species have been shown experimentally to have few genetic barriers to hybridization. Location The Mediterranean region, including northern Africa, extending eastwards to the Black Sea coast. Methods A generic level molecular phylogeny of Myrsinaceae and Primulaceae is constructed, using Bayesian approximation, to produce a secondary age estimate for the stem lineage of Cyclamen. This estimate is used to calibrate temporally an infrageneric phylogeny of Cyclamen, built with nrDNA ITS, cpDNA trnL-F and cpDNA rps16 sequences. A biogeographical analysis of Cyclamen is performed using dispersal-vicariance analysis. Results The emergence of the Cyclamen stem lineage is estimated at 30.1-29.2 Ma, and the crown divergence at 12.9-12.2 Ma. The average age of Cyclamen species is 3.7 Myr. Every pair of sister species have mutually exclusive, allopatric distributions relative to each other. This pattern appears typical of divergence events throughout the evolutionary history of the genus. Main conclusions Geographical barriers, such as the varying levels of the Mediterranean Sea, are the most plausible explanation for speciation events throughout the phylogenetic history of Cyclamen. The genus demonstrates distributional patterns congruent with the temporally reticulate palaeogeography of the Mediterranean region.
Resumo:
Climate change is expected to produce reductions in water availability in England, potentially necessitating adaptive action by the water industry to maintain supplies. As part of Ofwat's fifth Periodic Review (PR09), water companies recently released their draft Water Resources Management Plans, setting out how each company intends to maintain the balance between the supply and demand for water over the next 25 years, following Environment Agency guidelines. This paper reviews these plans to determine company estimates of the impact of climate change on water supply relative to other resource pressures. The approaches adopted for incorporating the impact in the plans and the proposed management solutions are also identified. Climate change impacts for individual resource zones range from no reductions in deployable output to greater than 50% over the planning period. The estimated national aggregated loss of deployable output under a “core” climate scenario is ~520 Ml/d (3% of deployable output) by 2034/35, the equivalent of the supply of one entire water company (South West Water). Climate change is the largest single driver of change in water supplies over the planning period. Over half of the climate change impact is concentrated in southern England. In extreme cases, climate change uncertainty is of the same magnitude as the change under the core scenario (up to a loss of ~475 Ml/d). 44 of the 68 resource zones with available data are estimated to have a climate change impact. In 35 of these climate change has the greatest impact although in 10 zones sustainability reductions have a greater impact. Of the overall change in downward pressure on the supply-demand balance over the planning period, ~56% is accounted for by increased demand (620 Ml/d) and supply side climate change accounts for ~37% (407 Ml/d). Climate change impacts have a cumulative impact in concert with other changing supply side reducing components increasing the national pressure on the supply-demand balance. Whilst the magnitude of climate change appears to justify its explicit consideration, it is rare that adaptation options are planned solely in response to climate change but as a suite of options to provide a resilient supply to a range of pressures (including significant demand side pressures). Supply-side measures still tend to be considered by water companies to be more reliable than demand-side measures.
Resumo:
We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.
Resumo:
Previous studies have shown that sea-ice in the Sea of Okhotsk can be affected by local storms; in turn, the resultant sea-ice changes can affect the downstream development of storm tracks in the Pacific and possibly dampen a pre-existing North Atlantic Oscillation (NAO) signal in late winter. In this paper, a storm tracking algorithm was applied to the six hourly horizontal winds from the National Centers for Environmental Prediction (NCEP) reanalysis data from 1978(9) to 2007 and output from the atmospheric general circulation model (AGCM) ECHAM5 forced by sea-ice anomalies in the Sea of Okhotsk. The life cycle response of storms to sea-ice anomalies is investigated using various aspects of storm activity—cyclone genesis, lysis, intensity and track density. Results show that, for enhanced positive sea-ice concentrations in the Sea of Okhotsk, there is a decrease in secondary cyclogenesis, a westward shift in cyclolysis and changes in the subtropical jet are seen in the North Pacific. In the Atlantic, a pattern resembling the negative phase of the NAO is observed. This pattern is confirmed by the AGCM ECHAM5 experiments driven with above normal sea-ice anomalies in the Sea of Okhotsk
Resumo:
Several studies using ocean–atmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Niño-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux negative feedback (α), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback, μ, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of α in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997–1998 El Niño. Biases in the shortwave flux feedback, α SW, are the main source of model uncertainty in α. Most models do not successfully represent the negative αSW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled α SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect α SW. We further show that the negative latent heat flux feedback, α LH, exhibits less diversity than α SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model αLH differences.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects from a sample of local authorities in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. Hedonic analysis indicated that there is considerable variation in time it takes local authorities to process planning applications, with the worst being four times slower than the best. Smaller builders and housing association developments are processed more quickly than those of large developers and small sites appear to be particularly time intensive. These results suggest that delays in development control may be a significant contributory factor to the low responsiveness of UK housing supply to upturns in market activity.
Resumo:
The Arctic is a region particularly susceptible to rapid climate change. General circulation models (GCMs) suggest a polar amplification of any global warming signal by a factor of about 1.5 due, in part, to sea ice feedbacks. The dramatic recent decline in multi-year sea ice cover lies outside the standard deviation of the CMIP3 ensemble GCM predictions. Sea ice acts as a barrier between cold air and warmer oceans during winter, as well as inhibiting evaporation from the ocean surface water during the summer. An ice free Arctic would likely have an altered hydrological cycle with more evaporation from the ocean surface leading to changes in precipitation distribution and amount. Using the U.K. Met Office Regional Climate Model (RCM), HadRM3, the atmospheric effects of the observed and projected reduction in Arctic sea ice are investigated. The RCM is driven by the atmospheric GCM HadAM3. Both models are forced with sea surface temperature and sea ice for the period 2061-2090 from the CMIP3 HadGEM1 experiments. Here we use an RCM at 50km resolution over the Arctic and 25km over Svalbard, which captures well the present-day pattern of precipitation and provides a detailed picture of the projected changes in the behaviour of the oceanic-atmosphere moisture fluxes and how they affect precipitation. These experiments show that the projected 21stCentury sea ice decline alone causes large impacts to the surface mass balance (SMB) on Svalbard. However Greenland’s SMB is not significantly affected by sea ice decline alone, but responds with a strongly negative shift in SMB when changes to SST are incorporated into the experiments. This is the first study to characterise the impact of changes in future sea ice to Arctic terrestrial cryosphere mass balance.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing. Most research focuses on the supply impacts of prescribed limits on land use but housing supply may also be affected by the process of planning monitoring and approval but this is hard to measure in detail. The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it, but does offer the opportunity of detailed site-based investigation of planning delay. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. Hedonic modelling indicated that there is considerable variation in the time it takes local authorities to process planning applications. Housing association developments are processed more quickly than those of large developers and small sites appear to be particularly time-intensive. These results suggest that delays in development control may be a significant contributory factor to the low responsiveness of UK housing supply to upturns in market activity.
Resumo:
Under increasing greenhouse gas concentrations, ocean heat uptake moderates the rate of climate change, and thermal expansion makes a substantial contribution to sea level rise. In this paper we quantify the differences in projections among atmosphere-ocean general circulation models of the Coupled Model Intercomparison Project in terms of transient climate response, ocean heat uptake efficiency and expansion efficiency of heat. The CMIP3 and CMIP5 ensembles have statistically indistinguishable distributions in these parameters. The ocean heat uptake efficiency varies by a factor of two across the models, explaining about 50% of the spread in ocean heat uptake in CMIP5 models with CO2 increasing at 1%/year. It correlates with the ocean global-mean vertical profiles both of temperature and of temperature change, and comparison with observations suggests the models may overestimate ocean heat uptake and underestimate surface warming, because their stratification is too weak. The models agree on the location of maxima of shallow ocean heat uptake (above 700 m) in the Southern Ocean and the North Atlantic, and on deep ocean heat uptake (below 2000 m) in areas of the Southern Ocean, in some places amounting to 40% of the top-to-bottom integral in the CMIP3 SRES A1B scenario. The Southern Ocean dominates global ocean heat uptake; consequently the eddy-induced thickness diffusivity parameter, which is particularly influential in the Southern Ocean, correlates with the ocean heat uptake efficiency. The thermal expansion produced by ocean heat uptake is 0.12 m YJ−1, with an uncertainty of about 10% (1 YJ = 1024 J).
Resumo:
There are significant discrepancies between observational datasets of Arctic sea ice concentrations covering the last three decades, which result in differences of over 20% in Arctic summer sea ice extent/area and 5%–10% in winter. Previous modeling studies have shown that idealized sea ice anomalies have the potential for making a substantial impact on climate. In this paper, this theory is further developed by performing a set of simulations using the third Hadley Centre Coupled Atmospheric Model (HadAM3). The model was driven with monthly climatologies of sea ice fractions derived from three of these records to investigate potential implications of sea ice inaccuracies for climate simulations. The standard sea ice climatology from the Met Office provided a control. This study focuses on the effects of actual inaccuracies of concentration retrievals, which vary spatially and are larger in summer than winter. The smaller sea ice discrepancies in winter have a much larger influence on climate than the much greater summer sea ice differences. High sensitivity to sea ice prescription was observed, even though no SST feedbacks were included. Significant effects on surface fields were observed in the Arctic, North Atlantic, and North Pacific. Arctic average surface air temperature anomalies in winter vary by 2.5°C, and locally exceed 12°C. Arctic mean sea level pressure varies by up to 5 mb locally. Anomalies extend to 45°N over North America and Eurasia but not to lower latitudes, and with limited changes in circulation above the boundary layer. No statistically significant impact on climate variability was simulated, in terms of the North Atlantic Oscillation. Results suggest that the uncertainty in summer sea ice prescription is not critical but that winter values require greater accuracy, with the caveats that the influences of ocean–sea ice feedbacks were not included in this study.