955 resultados para field method
Resumo:
The thesis mainly focuses on material characterization in different environments: freely available samples taken in planar fonn, biological samples available in small quantities and buried objects.Free space method, finds many applications in the fields of industry, medicine and communication. As it is a non-contact method, it can be employed for monitoring the electrical properties of materials moving through a conveyor belt in real time. Also, measurement on such systems at high temperature is possible. NID theory can be applied to the characterization of thin films. Dielectric properties of thin films deposited on any dielectric substrate can be determined. ln chemical industry, the stages of a chemical reaction can be monitored online. Online monitoring will be more efficient as it saves time and avoids risk of sample collection.Dielectric contrast is one of the main factors, which decides the detectability of a system. lt could be noted that the two dielectric objects of same dielectric constant 3.2 (s, of plastic mine) placed in a medium of dielectric constant 2.56 (er of sand) could even be detected employing the time domain analysis of the reflected signal. This type of detection finds strategic importance as it provides solution to the problem of clearance of non-metallic mines. The demining of these mines using the conventional techniques had been proved futile. The studies on the detection of voids and leakage in pipes find many applications.The determined electrical properties of tissues can be used for numerical modeling of cells, microwave imaging, SAR test etc. All these techniques need the accurate determination of dielectric constant. ln the modem world, the use of cellular and other wireless communication systems is booming up. At the same time people are concemed about the hazardous effects of microwaves on living cells. The effect is usually studied on human phantom models. The construction of the models requires the knowledge of the dielectric parameters of the various body tissues. lt is in this context that the present study gains significance. The case study on biological samples shows that the properties of normal and infected body tissues are different. Even though the change in the dielectric properties of infected samples from that of normal one may not be a clear evidence of an ailment, it is an indication of some disorder.ln medical field, the free space method may be adapted for imaging the biological samples. This method can also be used in wireless technology. Evaluation of electrical properties and attenuation of obstacles in the path of RF waves can be done using free waves. An intelligent system for controlling the power output or frequency depending on the feed back values of the attenuation may be developed.The simulation employed in GPR can be extended for the exploration of the effects due to the factors such as the different proportion of water content in the soil, the level and roughness of the soil etc on the reflected signal. This may find applications in geological explorations. ln the detection of mines, a state-of-the art technique for scanning and imaging an active mine field can be developed using GPR. The probing antenna can be attached to a robotic arm capable of three degrees of rotation and the whole detecting system can be housed in a military vehicle. In industry, a system based on the GPR principle can be developed for monitoring liquid or gas through a pipe, as pipe with and without the sample gives different reflection responses. lt may also be implemented for the online monitoring of different stages of extraction and purification of crude petroleum in a plant.Since biological samples show fluctuation in the dielectric nature with time and other physiological conditions, more investigation in this direction should be done. The infected cells at various stages of advancement and the normal cells should be analysed. The results from these comparative studies can be utilized for the detection of the onset of such diseases. Studying the properties of infected tissues at different stages, the threshold of detectability of infected cells can be determined.
Resumo:
The detection of buried objects using time-domain freespace measurements was carried out in the near field. The location of a hidden object was determined from an analysis of the reflected signal. This method can be extended to detect any number of objects. Measurements were carried out in the X- and Ku-bands using ordinary rectangular pyramidal horn antennas of gain 15 dB. The same antenna was used as the transmitter and recei er. The experimental results were compared with simulated results by applying the two-dimensional finite-difference time-domain(FDTD)method, and agree well with each other. The dispersi e nature of the dielectric medium was considered for the simulation.
Resumo:
ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.
Resumo:
This thesis deals with some studies in molecular mechanic using spectroscopic data. It includes an improvement in the parameter technique for the evaluation of exact force fields, the introduction of a new and simple algebraic method for the force field calculation and a study of asymmetric variation of bonding forces along a bond.
Resumo:
The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories
Resumo:
We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.
Resumo:
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.
Resumo:
The present study described about the interaction of a two level atom and squeezed field with time varying frequency. By applying a sinusoidal variation in the frequency of the field, the randomness in population inversion is reduced and the collapses and periodic revivals are regained. Quantum optics is an emerging field in physics which mainly deals with the interaction of atoms with quantised electromagnetic fields. Jaynes-Cummings Model (JCM) is a key model among them, which describes the interaction between a two level atom and a single mode radiation field. Here the study begins with a brief history of light, atom and their interactions. Also discussed the interaction between atoms and electromagnetic fields. The study suggest a method to manipulate the population inversion due to interaction and control the randomness in it, by applying a time dependence on the frequency of the interacting squeezed field.The change in behaviour of the population inversion due to the presence of a phase factor in the applied frequency variation is explained here.This study also describes the interaction between two level atom and electromagnetic field in nonlinear Kerr medium. It deals with atomic and field state evolution in a coupled cavity system. Our results suggest a new method to control and manipulate the population of states in two level atom radiation interaction,which is very essential for quantum information processing.We have also studied the variation of atomic population inversion with time, when a two level atom interacts with light field, where the light field has a sinusoidal frequency variation with a constant phase. In both coherent field and squeezed field cases, the population inversion variation is completely different from the phase zero frequency modulation case. It is observed that in the presence of a non zero phase φ, the population inversion oscillates sinusoidally.Also the collapses and revivals gradually disappears when φ increases from 0 to π/2. When φ = π/2 the evolution of population inversion is identical to the case when a two level atom interacts with a Fock state. Thus, by applying a phase shifted frequency modulation one can induce sinusoidal oscillations of atomic inversion in linear medium, those normally observed in Kerr medium. We noticed that the entanglement between the atom and field can be controlled by varying the period of the field frequency fluctuations. The system has been solved numerically and the behaviour of it for different initial conditions and different susceptibility values are analysed. It is observed that, for weak cavity coupling the effect of susceptibility is minimal. In cases of strong cavity coupling, susceptibility factor modifies the nature in which the probability oscillates with time. Effect of susceptibility on probability of states is closely related to the initial state of the system.
Resumo:
A comparison between the charge transport properties in low molecular amorphous thin films of spiro-linked compound and their corresponding parent compound has been demonstrated. The field-effect transistor method is used for extracting physical parameters such as field-effect mobility of charge carriers, ON/OFF ratios, and stability. In addition, phototransistors have been fabricated and demonstrated for the first time by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. The active materials used in this study can be divided into three classes, namely Spiro-linked compounds (symmetrically spiro-linked compounds), the corresponding parent-compounds, and photosensitive spiro-linked compounds (asymmetrically spiro-linked com-pounds). Some of symmetrically spiro-linked compounds used in this study were 2,2',7,7'-Tetrakis-(di-phenylamino)-9,9'-spirobifluorene (Spiro-TAD),2,2',7,7'-Tetrakis-(N,N'-di-p-methylphenylamino)-9,9'-spirobifluorene (Spiro-TTB), 2,2',7,7'-Tetra-(m-tolyl-phenylamino)-9,9'-spirobifluorene (Spiro-TPD), and 2,2Ž,7,7Ž-Tetra-(N-phenyl-1-naphtylamine)-9,9Ž-spirobifluorene (Spiro alpha-NPB). Related parent compounds of the symmetrically spiro-linked compound used in this study were N,N,N',N'-Tetraphenylbenzidine (TAD), N,N,N',N'-Tetrakis(4-methylphenyl)benzidine (TTB), N,N'-Bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), and N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (alpha-NPB). The photosensitive asymmetrically spiro-linked compounds used in this study were 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(biphenyl-4-yl)-9,9'-spirobifluorene (Spiro-DPSP), and 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(spirobifluorene-2-yl)-9,9'-spirobifluorene (Spiro-DPSP^2). It was found that the field-effect mobilities of charge carriers in thin films of symmetrically spiro-linked compounds and their corresponding parent compounds are in the same order of magnitude (~10^-5 cm^2/Vs). However, the thin films of the parent compounds were easily crystallized after the samples have been exposed in ambient atmosphere and at room temperature for three days. In contrast, the thin films and the transistor characteristics of symmetrically spiro-linked compound did not change significantly after the samples have been stored in ambient atmosphere and at room temperature for several months. Furthermore, temperature dependence of the mobility was analyzed in two models, namely the Arrhenius model and the Gaussian Disorder model. The Arrhenius model tends to give a high value of the prefactor mobility. However, it is difficult to distinguish whether the temperature behaviors of the material under consideration follows the Arrhenius model or the Gaussian Disorder model due to the narrow accessible range of the temperatures. For the first time, phototransistors have been fabricated and demonstrated by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. Intramolecular charge transfer between a bis(diphenylamino)biphenyl unit and a sexiphenyl unit leads to an increase in charge carrier density, providing the amplification effect. The operational responsivity of better than 1 A/W can be obtained for ultraviolet light at 370 nm, making the device interesting for sensor applications. This result offers a new potential application of organic thin film phototransistors as low-light level and low-cost visible blind ultraviolet photodetectors.
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Accurate Hartree-Fock-Slater calculations on small diatomic molecules with the finite-element method
Resumo:
We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Rhizome rot disease caused by Erwinia spp. is emerging as a major problem in banana nurseries and young plantations worldwide. Management of the disease is possible only in the initial stages of development. Currently no method is available for rescuing plant material already infected with this pathogen. A total of 95 Nanjanagud Rasabale and 212 Elakki Bale suckers were collected from different growing regions of Karnataka, India. During nursery maintenance of these lines, severe Erwinia infection was noticed. We present a method to rescue infected plants and establish them under field conditions. Differences were noticed in infection severity amongst the varieties and their accessions. Field data revealed good establishment and growth of most rescued plants under field conditions. The discussed rescue protocol coupled with good field management practices resulted in 89.19 and 82.59 percent field establishment of previously infected var. Nanjanagud Rasabale and var. Elakki Bale plants, respectively.
Resumo:
Since dwarf napiergrass (Pennisetum purpureum Schumach.) must be propagated vegetatively due to lack of viable seeds, root splitting and stem cuttings are generally used to obtain true-to-type plant populations. These ordinary methods are laborious and costly, and are the greatest barriers for expanding the cultivation area of this crop. The objectives of this research were to develop nursery production of dwarf napiergrass in cell trays and to compare the efficiency of mechanical versus manual methods for cell-tray propagation and field transplanting. After defoliation of herbage either by a sickle (manually) or hand-mowing machine, every potential aerial tiller bud was cut to a single one for transplanting into cell trays as stem cuttings and placed in a glasshouse over winter. The following June, nursery plants were trimmed to a 25–cm length and transplanted in an experimental field (sandy soil) with 20,000 plants ha^(−1) either by shovel (manually) or Welsh onion planter. Labour time was recorded for each process. The manual defoliation of plants required 44% more labour time for preparing the stem cuttings (0.73 person-min. stemcutting^(−1)) compared to using hand-mowing machinery (0.51 person-min. stem-cutting^(−1)). In contrast, labour time for transplanting required an extra 0.30 person-min. m^(−2) (14%) using the machinery compared to manual transplanting, possibly due to the limited plot size for machinery operation. The transplanting method had no significant effect on plant establishment or plant growth, except for herbage yield 110 days after planting. Defoliation of herbage by machinery, production using a cell-tray nursery and mechanical transplanting reduced the labour intensity of dwarf napiergrass propagation.
Resumo:
Sensing with electromagnetic waves having frequencies in the Terahertz-range is a very attractive investigative method with applications in fundamental research and industrial settings. Up to now, a lot of sources and detectors are available. However, most of these systems are bulky and have to be used in controllable environments such as laboratories. In 1993 Dyakonov and Shur suggested that plasma waves developing in field-effect-transistors can be used to emit and detect THz-radiation. Later on, it was shown that these plasma waves lead to rectification and allows for building efficient detectors. In contrast to the prediction that these plasma waves lead to new promising solid-state sources, only a few weak sources are known up to now. This work studies THz plasma waves in semiconductor devices using the Monte Carlo method in order to resolve this issue. A fast Monte Carlo solver was developed implementing a nonparabolic bandstructure representation of the used semiconductors. By investigating simplified field-effect-transistors it was found that the plasma frequency follows under equilibrium conditions the analytical predictions. However, no current oscillations were found at room temperature or with a current flowing in the channel. For more complex structures, consisting of ungated and gated regions, it was found that the plasma frequency does not follow the value predicted by the dispersion relation of the gated nor the ungated device.