273 resultados para esterification
Resumo:
Ce travail de thèse présente deux grands axes. Le premier axe, touche les traitements du bois dans le but principal de réduire les variations dimensionnelles et d’améliorer la résistance à l’attaque des champignons lignivores. Le second axe quant à lui, touche l’aspect environnemental du traitement acide citrique-glycérol. Ce dernier a pour but principal de démontrer que le prolongement de la durée de vie en service du produit lambris traité, compense les impacts environnementaux causés par ce traitement. Dans le premier axe, deux traitements ont été réalisés sur deux essences de pin (Pinus strobus L. et Pinus contorta D.). Un traitement à l’anhydride maléique et un autre traitement avec une solution d’acide citrique – glycérol brute (AC-G). Dans le premier cas, les effets de deux paramètres (la durée de séchage et la température d’estérification) sur les résultats des essais de stabilité dimensionnelle, de résistance à la dégradation fongique et de vieillissement accéléré ont été évalués. Trois niveaux de durée de séchage après imprégnation (12 h, 18 h et 24 h) et trois niveaux de température d’estérification (140 °C, 160 °C et 180 °C) ont été considérés. Dans le second cas, après identification du meilleur catalyseur (HCl) et du meilleur ratio acide citrique – glycérol (3/1) pendant les essais préliminaires, les performances de ce traitement sur la stabilité dimensionnelle, la résistance à la pourriture fongique, la dureté de surface et l’adhérence des couches de revêtement de peinture sur la surface du substrat bois ont été analysées. Les résultats obtenus ont été appuyés par une suite d’analyses qualitatives et quantitatives pour mieux comprendre et expliquer. Les analyses qualitatives sont : (i) la spectroscopie infrarouge à transformée de Fourier (IRTF) et (ii) la microscopie électronique à balayage (MEB) tandis que la quantitative, l’analyse par perte de masse a été faite par pesée. Dans le second axe, une analyse des impacts environnementaux du traitement AC-G a été effectuée par le biais du logiciel SimaPro v8. La base de données Ecoinvent v3 et la méthode d’analyse d’impact Impact 2002+ ont été utilisées dans cette partie du travail de thèse. Sur la base des résultats du second traitement (AC-G) et des travaux disponibles dans la littérature, nous avons estimé, une durée de vie en service des lambris traités. Les différents scénarios de la durée de vie du lambris traité mis sur pied par rapport à celle offerte aujourd’hui par l’industrie, nous permettent de modéliser les impacts environnementaux du traitement. A cette fin, l’analyse de cycle de vie (ACV) a été utilisée comme outil de conception. En conclusion, les paramètres, durée de séchage et température d’estérification influencent les résultats obtenus dans le cas du traitement du bois à l’anhydride maléique. La combinaison 24 h de séchage et 180 °C, température d’estérification, représente les paramètres qui offrent les meilleurs résultats de stabilité dimensionnelle, de résistance à la dégradation fongique et de vieillissement accéléré. Le traitement AC-G améliore la stabilité dimensionnelle, la résistance à la dégradation fongique et la dureté de surface des échantillons. Cependant, le traitement réduit l’adhérence des couches de peinture. Les impacts environnementaux produits par le traitement AC-G sont majoritairement liés à la consommation de la ressource énergie (électricité). Le traitement prolonge la durée de vie en service du lambris traité et il a été mis en évidence que le scénario de durée de vie qui permettrait que le lambris traité puisse se présenter comme un produit à faible impact environnemental par rapport au lambris non traité est celui d’une durée de vie de 55 ans.
Resumo:
Due to diminishing petroleum reserves, unsteady market situation and the environmental concerns associated with utilization of fossil resources, the utilization of renewables for production of energy and chemicals (biorefining) has gained considerable attention. Biomass is the only sustainable source of organic compounds that has been proposed as petroleum equivalent for the production of fuels, chemicals and materials. In fact, it would not be wrong to say that the only viable answer to sustainably convene our future energy and material requirements remain with a bio-based economy with biomass based industries and products. This has prompted biomass valorization (biorefining) to become an important area of industrial research. While many disciplines of science are involved in the realization of this effort, catalysis and knowledge of chemical technology are considered to be particularly important to eventually render this dream to come true. Traditionally, the catalyst research for biomass conversion has been focused primarily on commercially available catalysts like zeolites, silica and various metals (Pt, Pd, Au, Ni) supported on zeolites, silica etc. Nevertheless, the main drawbacks of these catalysts are coupled with high material cost, low activity, limited reusability etc. – all facts that render them less attractive in industrial scale applications (poor activity for the price). Thus, there is a particular need to develop active, robust and cost efficient catalytic systems capable of converting complex biomass molecules. Saccharification, esterification, transesterification and acetylation are important chemical processes in the valorization chain of biomasses (and several biomass components) for production of platform chemicals, transportation fuels, food additives and materials. In the current work, various novel acidic carbons were synthesized from wastes generated from biodiesel and allied industries, and employed as catalysts in the aforementioned reactions. The structure and surface properties of the novel materials were investigated by XRD, XPS, elemental analysis, SEM, TEM, TPD and N2-physisorption techniques. The agro-industrial waste derived sulfonic acid functionalized novel carbons exhibit excellent catalytic activity in the aforementioned reactions and easily outperformed liquid H2SO4 and conventional solid acids (zeolites, ion-exchange resins etc). The experimental results indicated strong influence of catalyst pore-structure (pore size, pore-volume), concentration of –SO3H groups and surface properties in terms of the activity and selectivity of these catalysts. Here, a large pore catalyst with high –SO3H density exhibited the highest esterification and transesterification activity, and was successfully employed in biodiesel production from fatty acids and low grade acidic oils. Also, a catalyst decay model was proposed upon biodiesel production and could explain that the catalyst loses its activity mainly due to active site blocking by adsorption of impurities and by-products. The large pore sulfonated catalyst also exhibited good catalytic performance in the selective synthesis of triacetin via acetylation of glycerol with acetic anhydride and out-performed the best zeolite H-Y with respect to reusability. It also demonstrated equally good activity in acetylation of cellulose to soluble cellulose acetates, with the possibility to control cellulose acetate yield and quality (degree of substitution, DS) by a simple adjustment of reaction time and acetic anhydride concentration. In contrast, the small pore and highly functionalized catalysts obtained by hydrothermal method and from protein rich waste (Jatropha de-oiled waste cake, DOWC), were active and selective in the esterification of glycerol with fatty acids to monoglycerides and saccharification of cellulosic materials, respectively. The operational stability and reusability of the catalyst was found to depend on the stability of –SO3H function (leaching) as well as active site blocking due to adsorption of impurities during the reaction. Thus, our results corroborate the potential of DOWC derived sulfated mesoporous active carbons as efficient integrated solid acid catalysts for valorization of biomass to platform chemicals, biofuel, bio-additive, surfactants and celluloseesters.
Resumo:
No presente trabalho estudou-se a produção de ésteres etílicos de ácido graxo de Ricinus communis L. através da tranesterificação alcalina do óleo de mamona com etanol. Esta metodologia foi adotada para determinar as melhores condições para a produção de biodiesel a partir de óleo de mamona usando o mínimo de operações unitárias com benefícios do ponto de vista econômico e de produção de efluentes. Para a obtenção dos ésteres etílicos através do processo de transesterificação (etapa 1) utilizou-se como catalisador 1% de NaOH com etanol em uma razão molar de 6:1 seguido da adição de ácido sulfúrico. Após, a reação de esterificação (etapa 2) dos ácidos graxos contidos no biodiesel foi realizada visando reduzir o índice de acidez da amostra, ficando em torno de 2 mg de KOH/g. A quebra in situ dos sabões (provenientes da reação paralela de saponificação do triglicerídeo) pela adição de ácido sulfúrico ao meio reacional foi bem sucedida melhorando a separação dos FAEEs do glicerol. O processo em duas etapas transesterificação/esterificação apresentou boa conversão para os ésteres etílicos, diminuindo o índice de acidez e atingindo as especificações para glicerina total e livre. O biodiesel proveniente do óleo de mamona foi composto de 90,6% ácido ricinoléico (C18:1, OH), 3,2% ácido oléico (C18:1), 4,5% ácido linoléico (C18:2), 0,7% ácido esteárico (C18:0), 1,0% ácido palmítico (C16:0), triacilgliceróis (TGs, 0%), diacilgliceróis (DGs, 0,37%) monoacilgliceróis (MGs, 0,46%) e glicerol livre (0,25%) após o processo em duas etapas transesterificação/esterificação. O processo em duas etapas foi muito importante para determinar a integralidade da reação no rendimento do produto. Os resultados demonstram que o procedimento desenvolvido para a produção de FAEEs em escala de laboratório pode ser escalonado para uma planta piloto.
Resumo:
O presente trabalho visa o desenvolvimento de um processo para a produção de biodiesel partindo de óleos de alta acidez, aplicando um processo em duas etapas de catálise homogênea. A primeira é a reação de esterificação etílica dos ácidos graxos livres, catalisada por H2SO4, ocorrendo no meio de triglicerídeos e a segunda é a transesterificação dos triglicerídeos remanescentes, ocorrendo no meio dos ésteres alquílicos da primeira etapa e catalisada com álcali (NaOH) e álcool etílico ou metílico. A reação de esterificação foi estudada com uma mistura modelo consistindo de óleo de soja neutro acidificado artificialmente com 15%p de ácido oleico PA. Este valor foi adotado, como referência, devido a certas gorduras regionais (óleo de mamona advinda de agricultura familiar, sebos de matadouro e óleo de farelo de arroz, etc.) apresentarem teores entre 10-20%p de ácidos graxos livres. Nas duas etapas o etanol é reagente e também solvente, sendo a razão molar mistura:álcool um dos parâmetros pesquisados nas relações 1:3, 1:6 e 1:9. Outros foram a temperatura 60 e 80ºC e a concentração percentual do catalisador, 0,5, 1,0 e 1,5%p, (em relação à massa de óleo). A combinatória destes parâmetros resultou em 18 reações. Dentre as condições reacionais estudadas, oito atingiram acidez aceitável inferior a 1,5%p possibilitando a definição das condições para aplicação ótima da segunda etapa. A melhor condição nesta etapa ocorreu quando a reação foi conduzida a 60°C com 1%p de H2SO4 e razão molar 1:6. No final da primeira etapa foram realizados tratamentos pertinentes como a retirada do catalisador e estudada sua influência sobre a acidez final, utilizando-se de lavagens com e sem adição de hexano, seguidas de evaporação ou adição de agente secante. Na segunda etapa estudaram-se as razões molares de óleo:álcool de 1:6 e 1:9 com álcool metílico e etílico, com 0,5 e 1%p de NaOH assim como o tratamento da reação (lavagem ou neutralização do catalisador) a 60°C, resultando em 16 experimentos. A melhor condição nesta segunda etapa ocorreu com 0,5%p de NaOH, razão molar óleo:etanol de 1:6 e somente as reações em que se aplicaram lavagens apresentaram índices de acidez adequados (<1,0%p) coerentes com os parâmetros da ANP.
Resumo:
Neste trabalho, a produção de ésteres graxos da biomassa úmida da microalga Chlorella sp. foi investigada pelo método de hidrólise seguido de esterificação e comparado com o método convencional de extração/transesterificação. Na primeira etapa do processo de hidrólise “in situ” seguido de esterificação ocorreu à hidrólise, onde a água presente na biomassa (50 e 100% em massa) reagiu com os lipídios de reserva, na presença de H2SO4 (20, 40 e 60% em massa), sendo obtidos os ácidos graxos brutos. Na segunda etapa do processo, os ácido graxos foram submetidos à reação de esterificação por 1 ou 4 h na presença de metanol, na razão molar de 30:1 álcool:AG, com H2SO4 10% em massa a 60 ou 100 °C. De acordo com os resultados obtidos no processo de hidrólise/esterificação, os melhores rendimentos – cerca de 7,3±0,8% de FAMEs, em relação a biomassa inicial – foram obtidos na presença de 60% de catalisador e 50% de umidade, na etapa de hidrólise e 100 °C por 4 h na etapa de esterificação. No método convencional de extração-transesterificação, os melhores rendimentos – 7,1±1,8% de FAMEs em relação à biomassa seca – foram obtidos utilizando a mistura de clorofórmio:metanol 2:1 v/v. Em resumo os rendimentos obtidos nos dois métodos de produção de ésteres graxos foram próximos. No entanto, o processo de hidrólise “in situ” seguido de esterificação possui vantagens como a utilização da biomassa úmida.
Resumo:
A utilização do óleo de mamona como matéria-prima para produção de biodiesel mostra-se inviável na combustão interna do motor devido sua natureza química incomum que lhe confere especificações acima do permitido nas especificações técnicas da legislação nacional brasileira. Desta forma, a blenda com óleo de arroz refinado (OM:OA) qualifica o biodiesel atendendo a legislação nacional, além de corrigir a elevada acidez do óleo bruto de mamona prejudicial ao processo de transesterificação homogênea básica. No presente estudo realizou-se a produção de biodiesel etílico em escala piloto a partir de blendas de óleo bruto de mamona e óleo refinado de arroz em dois processos: o primeiro processo adotando a mistura direta dos dois óleos e o segundo processo pela esterificação antecipada do óleo bruto de mamona. Ambos os processos foram aplicados visando tanto definir os critérios de processo (acidez inicial) quanto o cumprimento das especificações técnicas (viscosidade e densidade). A produção em escala piloto (200 litros/batelada) foi realizada na Usina Demonstrativa para Produção de Biodiesel – BIOSUL (Edital FINEP, 2005) da Universidade Federal do Rio Grande - FURG utilizando em ambos os processos transesterificação, com hidróxido de sódio, e esterificação com ácido sulfúrico. Os processos apresentaram resultados satisfatórios, sendo o processo de mistura direta (Processo A) o que obteve melhores rendimentos (94,04%, blenda 20:80) enquanto que o processo de pré- esterificação (Processo B) foi aquele que proporcionou a maior fração de óleo de mamona na blenda (80,36%, 33:67). Os resultados para o Processo A de glicerol livre, monoacilgliceróis, diacilgliceróis, triacilgliceróis e de glicerol total foram, respectivamente, de 1,322 %, 6,092 %, 1,000 %, 0,884 e 3,152%. Neste estudo foi comprovada a viabilidade do processamento, em batelada, de blendas dos óleos de mamona e arroz. O óleo de mamona bruto pode ser utilizado em até 30% produzindo biodiesel dentro da legislação, verificando-se assim a viabilidade do uso da mamona na produção de biocombustíveis.
Resumo:
No presente trabalho foi utilizado o processo de produção de biodiesel a partir da transesterificação de blendas de óleo de mamona e soja com etanol empregando-se como catalisador NaOH e posterior adição de H2SO4 para a neutralização do catalisador, visando a quebra de sabões e a melhor separação do biodiesel de seus co-produtos. Foi investigada a reação de transesterificação em blendas de óleo de mamona:soja nas proporções de 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 e 90:10, sendo que as proporções que apresentaram melhores rendimentos foram 30:70, 60:40 e 80:20. O biodiesel obtido das blendas como melhor rendimento foram submetidos a medições viscosimétricas, sendo a proporção 30:70 a que apresentou a viscosidade mais próxima à especificada pela ANP (6,12 mm2 /s). O biodiesel etílico produzido com a blenda 30:70 obtido na transesterificação foi submetido a esterificação para diminuir o índice de acidez, utilizando H2SO4 como catalisador em concentrações de 5% e 10% em relação a massa de ácidos graxos livres, com álcool etílico numa razão molar de 60:1 e 80:1 álcool:ácido graxo. Para a reação de transesterificação, também foi estudada, a influência da concentração do catalisador no rendimento de biodiesel etílico e na formação de sabão. A quantidade de sabão formado no processo variou de 5,70% a 9,54% para 1% a 2% de catalisador, respectivamente.
Resumo:
No presente trabalho foi investigada a adição on pot de H2SO4 no processo de transesterificação do óleo de girassol com etanol e metanol empregando catalisador alcalino (NaOH e KOH). Após o processo, ocorreu uma eficiente separação tanto do biodiesel etílico como metílico de seus co-produtos. Com a adição on pot de H2SO4 todo sabão formado no meio reacional foi transformado em ácidos graxos livres e o catalisador em sal (Na2SO4 ou K2SO4). A esterificação dos ácidos graxos livres presentes no biodiesel foi aplicada para atingir os padrões de biocombustíveis. Os ácidos graxos contidos no biodiesel foram esterificados na presença de uma mistura com razão molar de 60:1 e 80:1 álcool:ácido graxo, com H2SO4 5 e 10 % em massa. Também foi avaliada a influência da quantidade de catalisador na reação paralela de saponificação. De acordo com os resultados observou-se que a quantidade de sabão formado no processo, variou entre 1,80 e 10,66 % para 1 e 2 % de catalisador, respectivamente. A adição on pot de H2SO4 permitiu aumentar o rendimento de obtenção de biodiesel, e reduziu a geração de efluentes provenientes das lavagens para remoção do sabão, quando comparado com o processo convencional. As análises foram realizadas para avaliar a qualidade do biodiesel, com exceção da estabilidade oxidativa, os demais parâmetros estão de acordo com as normas da ANP. A glicerina foi obtida com uma pureza de 95 % de glicerol com aspecto límpido e incolor, sendo seu principal contaminante o sal proveniente da neutralização do catalisador.
Resumo:
The amphidinolides are marine macrolides extracted from dinoflagellates of the genus Amphidinium. To date, 37 amphidinolides have been isolated and identified, most of them possessing cytotoxicity against human cancer cell lines. Among these, amphidinolides C, F, C2 and C3 represent synthetic targets of interest owing to their scarcity, structural complexity and promising biological activities. This thesis describes the work realised towards the total synthesis of amphidinolides C and F, with a focus on the different strategies investigated and the key fragments synthesised. In the first approach, the C18−C29 fragment of amphidinolide F was prepared using an intramolecular etherification of an epoxide under acidic catalysis to produce the 2,5-trans-disubstituted tetrahydrofuran ring featured in the natural product. Unfortunately, dithiane alkylation with the C1−C17 iodide counterpart generated the desired coupling product in low yield. A second approach proposing to build the C17−C18 bond by a silicon-tethered RCM proved unsuccessful, because the requisite diene could not be obtained. It was then envisioned to form the C18−C19 bond by displacement of a triflate with an alkyne and install the ketone at C18 by a protoborylation/oxidation sequence. To this end, the C19−C29 triflate precursor was synthesised. Displeasingly, the C1−C18 alkyne counterpart (work by Dr Filippo Romiti) could not be prepared and coupling of the two fragments was not attempted. In the latest approach, the C10−C29 fragment of amphidinolide F was obtained employing a boron-mediated aldol condensation and a dithiane alkylation to form the C13−C14 and C18−C19 bonds. Several endgame strategies were examined including the successful Yamaguchi esterification of the C13-epi C10−C29 fragment and the C1−C9 acid. A challenging Stille crosscoupling was then effected to close the macrocycle but only yielded the desired macrolactone in trace amounts after global desilylation.
Resumo:
Les macrolactones sont des squelettes structuraux importants dans de nombreuses sphères de l’industrie chimique, en particulier dans les marchés pharmaceutiques et cosmétiques. Toutefois, la stratégie traditionnelle pour la préparation de macrolactones demeure incommode en requérant notamment l’ajout (super)stœchiométrique d’agents activateurs. Conséquemment, des quantités stœchiométriques de sous-produits sont générées; ils sont souvent toxiques, dommageables pour l’environnement et nécessitent des méthodes de purification fastidieuses afin de les éliminer. La présente thèse décrit le développement d’une macrolactonisation efficace catalysée au hafnium directement à partir de précurseurs portant un acide carboxylique et un alcool primaire, ne générant que de l’eau comme sous-produit et ne nécessitant pas de techniques d’addition lente et/ou azéotropique. Le protocole a également été adapté à la synthèse directe de macrodiolides à partir de mélanges équimolaires de diols et de diacides carboxyliques et à la synthèse de dimères tête-à-queue de seco acides. Des muscs macrocycliques ainsi que des macrolactones pertinentes à la chimie médicinale ont pu être synthétisés avec l’approche développée. Un protocole pour l’estérification directe catalysée au hafnium entre des acides carboxyliques et des alcools primaires a aussi été développé. Différentes méthodes pour la macrolactonisation catalytique directe entre des alcools secondaires et des acides carboxyliques ont été étudiées. En outre, la stratégie de séparation de phase en macrocyclisation en débit continu a été appliquée lors de la synthèse totale formelle de la macrolactone ivorenolide A. Les étapes-clés de la synthèse incluent une macrocyclisation par le couplage d’alcynes de Glaser-Hay et une réaction de métathèse d’alcènes Z-sélective.
Resumo:
Terephthalic acid (PTA) is one of the monomers used for the synthesis of the polyester, polyethylene terephthalate (PET), that is used for the large-scale manufacture of synthetic fibers and plastic bottles. PTA is largely produced from the liquid-phase oxidation of petroleum-derived p-xylene (PX). However, there are now ongoing worldwide efforts exploring alternative routes for producing PTA from renewable, biomass resources.
In this thesis, I present a new route to PTA starting from the biomass-derived platform chemical, 5-hydroxymethylfurfural (HMF). This route utilizes new, selective Diels-Alder-dehydration reactions involving ethylene and is advantageous over the previously proposed Diels-Alder-dehydration route to PTA from HMF via 2,5-dimethylfuran (DMF) since the H2 reduction of HMF to DMF is avoided. Specifically, oxidized derivatives of HMF are reacted as is, or after etherification-esterification with methanol, with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids in order to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA) is reacted with high pressure ethylene over a pure-silica molecular sieve catalyst containing framework tin (Sn-Beta) to produce the Diels-Alder-dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with ~30% selectivity at ~20% yield. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with >70% selectivity at >20% yield. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder-dehydration product is observed.
An investigation to elucidate the reaction network and side products in the conversion of MMFC to MMBC was performed, and the main side products are found to be methyl 4-formylcyclohexa-1,3-diene-1-carboxylate and the ethylene Diels-Alder adduct of this cyclohexadiene. These products presumably form by a different dehydration pathway of the MMFC/ethylene Diels-Alder adduct and should be included when determining the overall selectivity to PTA or DMT since, like MMBC, these compounds are precursors to PTA or DMT.
Fundamental physical and chemical information on the ethylene Diels-Alder-dehydration reactions catalyzed by the Lewis acid-containing molecular sieves was obtained. Madon-Boudart experiments using Zr-Beta as catalyst show that the reaction rates are limited by chemical kinetics only (physical transport limitations are not present), all the Zr4+ centers are incorporated into the framework of the molecular sieve, and the whole molecular sieve crystal is accessible for catalysis. Apparent activation energies using Zr-Beta are low, suggesting that the overall activation energy of the system may be determined by a collection of terms and is not the true activation energy of a single chemical step.
Resumo:
Doutoramento em Engenharia Agronómica - Instituto Superior de Agronomia - UL
Resumo:
With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)
Resumo:
Résumé : Au Canada, près de 80% des émissions totales, soit 692 Mt eq. CO[indice inférieur 2], des gaz à effet de serre (GES) sont produits par les émissions de dioxyde de carbone (CO[indice inférieur 2]) provenant de l’utilisation de matières fossiles non renouvelables. Après la Conférence des Nations Unies sur les changements climatiques, COP21 (Paris, France), plusieurs pays ont pour objectif de réduire leurs émissions de GES. Dans cette optique, les microalgues pourraient être utilisées pour capter le CO[indice inférieur 2] industriel et le transformer en biomasse composée principalement de lipides, de glucides et de protéines. De plus, la culture des microalgues n’utilise pas de terre arable contrairement à plusieurs plantes oléagineuses destinées à la production de biocarburants. Bien que les microalgues puissent être transformées en plusieurs biocarburants tels le bioéthanol (notamment par fermentation des glucides) ou le biométhane (par digestion anaérobie), la transformation des lipides en biodiesel pourrait permettre de réduire la consommation de diesel produit à partir de pétrole. Cependant, les coûts reliés à la production de biodiesel à partir de microalgues demeurent élevés pour une commercialisation à court terme en partie parce que les microalgues sont cultivées en phase aqueuse contrairement à plusieurs plantes oléagineuses, ce qui augmente le coût de récolte de la biomasse et de l’extraction des lipides. Malgré le fait que plusieurs techniques de récupération des lipides des microalgues n’utilisant pas de solvant organique sont mentionnées dans la littérature scientifique, la plupart des méthodes testées en laboratoire utilisent généralement des solvants organiques. Les lipides extraits peuvent être transestérifiés en biodiesel en présence d’un alcool tel que le méthanol et d’un catalyseur (catalyses homogène ou hétérogène). Pour la commercialisation du biodiesel à partir de microalgues, le respect des normes ASTM en vigueur est un point essentiel. Lors des essais en laboratoire, il a été démontré que l’extraction des lipides en phase aqueuse était possible afin d’obtenir un rendement maximal en lipides de 36% (m/m, base sèche) en utilisant un prétraitement consistant en une ébullition de la phase aqueuse contenant les microalgues et une extraction par des solvants organiques. Pour l’estérification, en utilisant une résine échangeuse de cations (Amberlyst-15), une conversion des acides gras libres de 84% a été obtenue à partir des lipides de la microalgue Chlorella protothecoïdes dans les conditions suivantes : température : 120°C, pression autogène, temps de réaction : 60 min, ratio méthanol/lipides: 0.57 mL/g et 2.5% (m/m) Amberlyst-15 par rapport aux lipides. En utilisant ces conditions avec une catalyse homogène (acide sulfurique) et une seconde étape alcaline avec de l’hydroxyde de potassium (température : 60°C ; temps de réaction : 22.2 min; ratio catalyseur microalgue : 2.48% (m/m); ratio méthanol par rapport aux lipides des microalgues : 31.4%), un rendement en esters méthyliques d’acides gras (EMAG) de 33% (g EMAG/g lipides) a été obtenu à partir des lipides de la microalgue Scenedesmus Obliquus. Les résultats démontrent que du biodiesel peut être produit à partir de microalgues. Cependant, basé sur les présents résultats, il sera necessaire de mener d’autre recherche pour prouver que les microalgues sont une matière première d’avenir pour la production de biodiesel.
Resumo:
Biodiesel production from waste cooking oil with methanol was carried out in the presence of poly(vinyl alcohol) with sulfonic acid groups (PVA-SO3H) and polystyrene with sulfonic acid groups (PS-SO3H), at 60°C. The PVA-SO3H catalyst showed higher catalytic activity than the PS-SO3H one. In order to optimize the reaction conditions, different parameters were studied. An increase of waste cooking oil conversion into fatty acid methyl esters with the amount of PVA-SO3H was observed. When the transesterification and esterification of WCO was carried out with ethanol over PVA-SO3H, at 60°C, a decrease of biodiesel production was also observed. The WCO conversion into fatty acid ethyl ester increased when the temperature was increased from 60 to 80°C. When different amounts of free fatty acids were added to the reaction mixture, a slight increase on the conversion was observed. The PVASO3H catalyst was reused and recycled with negligible loss in the activity.