866 resultados para electronic recruitment
Resumo:
Waddlia chondrophila is an obligate intracellular bacterium considered as a potential agent of abortion in both humans and bovines. This member of the order Chlamydiales multiplies rapidly within human macrophages and induces lysis of the infected cells. To understand how this Chlamydia-like micro-organism invades and proliferates within host cells, we investigated its trafficking within monocyte-derived human macrophages. Vacuoles containing W. chondrophila acquired the early endosomal marker EEA1 during the first 30 min following uptake. However, the live W. chondrophila-containing vacuoles never co-localized with late endosome and lysosome markers. Instead of interacting with the endosomal pathway, W. chondrophila immediately co-localized with mitochondria and, shortly after, with endoplasmic reticulum- (ER-) resident proteins such as calnexin and protein disulfide isomerase. The acquisition of mitochondria and ER markers corresponds to the beginning of bacterial replication. It is noteworthy that mitochondrion recruitment to W. chondrophila inclusions is prevented only by simultaneous treatment with the microtubule and actin cytoskeleton-disrupting agents nocodazole and cytochalasin D. In addition, brefeldin A inhibits the replication of W. chondrophila, supporting a role for COPI-dependent trafficking in the biogenesis of the bacterial replicating vacuole. W. chondrophila probably survives within human macrophages by evading the endocytic pathway and by associating with mitochondria and the ER. The intracellular trafficking of W. chondrophila in human macrophages represents a novel route that differs strongly from that used by other members of the order Chlamydiales.
Resumo:
Human papillomaviruses (HPV)-related cervical cancer is the second leading cause of cancer death in women worldwide. Despite active development, HPV E6/E7 oncogene-specific therapeutic vaccines have had limited clinical efficacy to date. Here, we report that intravaginal (IVAG) instillation of CpG-ODN (TLR9 agonist) or poly-(I:C) (TLR3 agonist) after subcutaneous E7 vaccination increased ∼fivefold the number of vaccine-specific interferon-γ-secreting CD8 T cells in the genital mucosa (GM) of mice, without affecting the E7-specific systemic response. The IVAG treatment locally increased both E7-specific and total CD8 T cells, but not CD4 T cells. This previously unreported selective recruitment of CD8 T cells from the periphery by IVAG CpG-ODN or poly-(I:C) was mediated by TLR9 and TLR3/melanoma differentiation-associated gene 5 signaling pathways, respectively. For CpG, this recruitment was associated with a higher proportion of GM-localized CD8 T cells expressing both CCR5 and CXCR3 chemokine receptors and E-selectin ligands. Most interestingly, IVAG CpG-ODN following vaccination led to complete regression of large genital HPV tumors in 75% of mice, instead of 20% with vaccination alone. These findings suggest that mucosal application of immunostimulatory molecules might substantially increase the effectiveness of parenterally administered vaccines.Mucosal Immunology advance online publication 12 September 2012; doi:10.1038/mi.2012.83.
Resumo:
One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.
Resumo:
In this study we report that, in response to proteasome inhibition, the E3-Ubiquitin ligase TRIM50 localizes to and promotes the recruitment and aggregation of polyubiquitinated proteins to the aggresome. Using Hdac6-deficient mouse embryo fibroblasts (MEF) we show that this localization is mediated by the histone deacetylase 6, HDAC6. Whereas Trim50-deficient MEFs allow pinpointing that the TRIM50 ubiquitin-ligase regulates the clearance of polyubiquitinated proteins localized to the aggresome. Finally we demonstrate that TRIM50 colocalizes, interacts with and increases the level of p62, a multifunctional adaptor protein implicated in various cellular processes including the autophagy clearance of polyubiquitinated protein aggregates. We speculate that when the proteasome activity is impaired, TRIM50 fails to drive its substrates to the proteasome-mediated degradation, and promotes their storage in the aggresome for successive clearance.
Resumo:
The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline sex chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process.
Resumo:
We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.
Resumo:
IL-1beta is a cytokine with major roles in inflammation and innate immune responses. IL-1beta is produced as an inactive proform that must be cleaved within the cell to generate biologically active IL-1beta. The enzyme caspase-1 catalyzes the reaction. Recent work showed that caspase-1 must be activated by a complex known as the inflammasome. The inflammasome comprises NALP, which is an intracellular receptor involved in innate immunity, and an ASC adapter that ensures caspase-1 recruitment to the receptor. The most extensively described inflammasome to date is formed by the NALP3 receptor within monocytes. Mutations involving the NALP3 gene cause hereditary periodic fever syndromes in humans. Increased inflammasome activity responsible for uncontrolled IL-1beta production occurs in these syndromes. Inhibition of the IL-1beta pathway by IL-1 receptor antagonist (anakinra) is a highly effective treatment for inherited periodic fever syndromes. A major role for inflammasome activity in the development of gout attacks was established recently. Urate monosodium crystals are specifically detected via the NALP3 inflammasome, which results in marked IL-1beta overproduction and initiation of an inflammatory response. This finding opens up new possibilities for the management of gouty attacks.
Resumo:
Introduction: We launched an investigator-initiated study (ISRCTN31181395) to evaluate the potential benefit of pharmacokinetic-guided dosage individualization of imatinib for leukaemiapatients followed in public and private sectors. Following approval by the research ethics committee (REC) of the coordinating centre, recruitment throughout Switzerland necessitatedto submit the protocol to 11 cantonal RECs.Materials and Methods: We analysed requirements and evaluation procedures of the 12 RECs with associated costs.Results: 1-18 copies of the dossier, in total 4300 printed pages, were required (printing/posting costs: ~300 CHF) to meet initial requirements. Meeting frequencies of RECs ranged between 2 weeks and 2 months, time from submission to fi rst feedback took 2-75 days. Study approval was obtained from a chairman, a subor the full committee, the evaluation work being invoiced by0-1000 CHF (median: 750 CHF, total: 9200 CHF). While 5 RECs gave immediate approval, the other 6 rose in total 38 queries before study release, mainly related to wording in the patient information, leading to 7 different fi nal versions approved. Submission tasks employed an investigator half-time over about 6 months.Conclusion: While the necessity of clinical research evaluation by independent RECs is undisputed, there is a need of further harmonization and cooperation in evaluation procedures. Current administrative burden is indeed complex, time-consuming and costly. A harmonized electronic application form, preferably compatible with other regulatory bodies and European countries, could increase transparency, improve communication, and encourage academic multi-centre clinical research in Switzerland.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Resumo:
Site licensing of e-journals has been revolutionizing the way academicinformation is distributed. However, many librarians are concerned aboutthe possibility that publishers might abuse site licensing by practicingbundling. In this paper, we analyze the private and social incentives forthe publishers to use bundling in the context of STM electronic journalmarket. In the short run in which the number of journals is exogenouslygiven, we find a strong conflict between the two incentives: each publisherfinds bundling optimal and bundling increases the industry profit butreduces social welfare. However, in the long run we find that publishersmight have higher incentives to introduce new journals under bundlingthan without bundling and, in this case, bundling can reduce the industryprofit while increasing social welfare. Finally, we examine publishers incentive to provide links to the websites of the rival publishers underbundling and show that even asymmetric publishers have incentive tointerconnect.
Resumo:
OBJECTIVE: Whole-body vibration (WBV) exercise is progressively adopted as an alternative therapeutic modality for enhancing muscle force and muscle activity via neurogenic potentiation. So far, possible changes in the recruitment patterns of the trunk musculature after WBV remain undetermined. The main objective of this study was to evaluate the short-term effects of a single WBV session on trunk neuromuscular responses in patients with chronic low back pain (cLBP) and healthy participants. METHODS: Twenty patients with cLBP and 21 healthy participants performed 10 trunk flexion-extensions before and after a single WBV session consisting of five 1-minute vibration sets. Surface electromyography (EMG) of erector spinae at L2-L3 and L4-L5 and lumbopelvic kinematic variables were collected during the trials. Data were analyzed using 2-way mixed analysis of variance models. RESULTS: The WBV session led to increased lumbar EMG activity during the flexion and extension phases but yielded no change in the quiet standing and fully flexed phases. Kinematic data showed a decreased contribution to the movement of the lumbar region in the second extension quartile. These effects were not different between patients with cLBP and healthy participants. CONCLUSIONS: Increased lumbar EMG activity after a single WBV session most probably results from potentiation effects of WBV on lumbar muscles reflex responses. Decreased EMG activity in full trunk flexion, usually observed in healthy individuals, was still present after WBV, suggesting that the ability of the spine stabilizing mechanisms to transfer the extension torque from muscles to passive structures was not affected.
Resumo:
Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.
Resumo:
House File 2196 required the Department of Transportation (DOT) to study the acceptance of electronic payments at its customer service sites and sites operated by county treasurers. Specifically the legislation requires the following: “The department of transportation shall review the current methods the department employs for the collection of fees and other revenues at sites operated by county treasurers under chapter 321M and at customer service sites operated by the department. In conducting its review, the department, in cooperation with the treasurer of state, shall consider providing an electronic payment option for all of its customers. The department shall report its findings and recommendations by December 31, 2008, to the senate and house standing committees on transportation regarding the advantages and disadvantages of implementing one or more electronic payment systems.” This review focused on estimating the costs of providing an electronic payment option for customers of the DOT driver’s license stations and those of the 81 county treasurers. Customers at these sites engage in three primary financial transactions for which acceptance of electronic payments was studied: paying for a driver’s license (DL), paying for a non-operator identification card (ID), and paying certain civil penalties. Both consumer credit cards and PIN-based debit cards were reviewed as electronic payment options. It was assumed that most transactions would be made using a consumer credit card. Credit card companies charge a fee for each transaction for which they are used. The amount of these fees varies among credit card companies. The estimates for credit card fees used in this study were based on the State Treasurer of Iowa’s current credit card contract, which is due to expire in September 2009. Since credit card companies adjust their fees each year, estimates were based on the 2008 fee schedule. There is also a fee for the use of PIN-based debit cards. The estimates for PIN-based debit card transactions were based on information provided by Wells Fargo Merchant Services for current fees charged by debit card networks. Credit and debit card transactions would be processed through vendor-provided hardware and software. The costs would be determined through the competitive bidding process since several vendors provide this function; therefore, these costs are not reflected in this document.
Resumo:
Estudia las fluctuaciones de recolección de la anchoveta peruana entre 1961 y 1976