999 resultados para efficiency defense
Resumo:
We present here a series of cholesterol based cationic lipid suspensions that solubilize single-walled carbon nanotubes (SWCNT) efficiently in water. Each cationic lipid formulation was characterized in terms of their energy minimized molecular structures, bilayer widths of the aggregates based on X-ray diffraction. Then these aggregates were investigated pertaining to their DNA binding and release efficiency, effect of CNT inclusion on the stability of cationic cholesterol lipid-DNA complexes, Zeta potential values and changes in the chiro-optical property of DNA, effect on Raman spectral shift and changes in morphology by SEM and AFM. Each cationic lipid formulation was optimized for the amount of SWCNT solubilized in water, lipid-DNA ratio, amount of the plasmid DNA that can be transfected and the effect on the cellular toxicity. The resulting SWCNT-lipid formulations were then used for in vitro transfection of pEGFP-C3 in A549 (human alveolar basal epithelial) cells and HeLa (human cervical cancer) cells. Advantageously, the CNT-loaded formulations confer an excellent transfection efficiency even in high percentages of blood serum and showed significantly better gene transfer efficiency compared to one of the potent, well-known commercial transfection reagent, Lipofectamine2000.
Resumo:
A robust numerical solution of the input voltage equations (IVEs) for the independent-double-gate metal-oxide-semiconductor field-effect transistor requires root bracketing methods (RBMs) instead of the commonly used Newton-Raphson (NR) technique due to the presence of nonremovable discontinuity and singularity. In this brief, we do an exhaustive study of the different RBMs available in the literature and propose a single derivative-free RBM that could be applied to both trigonometric and hyperbolic IVEs and offers faster convergence than the earlier proposed hybrid NR-Ridders algorithm. We also propose some adjustments to the solution space for the trigonometric IVE that leads to a further reduction of the computation time. The improvement of computational efficiency is demonstrated to be about 60% for trigonometric IVE and about 15% for hyperbolic IVE, by implementing the proposed algorithm in a commercial circuit simulator through the Verilog-A interface and simulating a variety of circuit blocks such as ring oscillator, ripple adder, and twisted ring counter.
Resumo:
Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''
Resumo:
The diffusion equation-based modeling of near infrared light propagation in tissue is achieved by using finite-element mesh for imaging real-tissue types, such as breast and brain. The finite-element mesh size (number of nodes) dictates the parameter space in the optical tomographic imaging. Most commonly used finite-element meshing algorithms do not provide the flexibility of distinct nodal spacing in different regions of imaging domain to take the sensitivity of the problem into consideration. This study aims to present a computationally efficient mesh simplification method that can be used as a preprocessing step to iterative image reconstruction, where the finite-element mesh is simplified by using an edge collapsing algorithm to reduce the parameter space at regions where the sensitivity of the problem is relatively low. It is shown, using simulations and experimental phantom data for simple meshes/domains, that a significant reduction in parameter space could be achieved without compromising on the reconstructed image quality. The maximum errors observed by using the simplified meshes were less than 0.27% in the forward problem and 5% for inverse problem.
Resumo:
We show that the operation and the output power of a quantum heat engine that converts incoherent thermal energy into coherent cavity photons can be optimized by manipulating quantum coherences. The gain or loss in the efficiency at maximum power depends on the details of the output power optimization. Quantum effects tend to enhance the output power and the efficiency as the photon occupation in the cavity is decreased.
Resumo:
Tunability of electron recombination time and light to electricity conversion efficiency to superior values in semiconductor sensitized solar cells via optimized design of nanocrystal light sensitizer shape is discussed here.
Resumo:
The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.
Resumo:
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Resumo:
Carbon Nanotubes (CNTs) grown on substrates are potential electron sources in field emission applications. Several studies have reported the use of CNTs in field emission devices, including field emission displays, X-ray tube, electron microscopes, cathode-ray lamps, etc. Also, in recent years, conventional cold field emission cathodes have been realized in micro-fabricated arrays for medical X-ray imaging. CNTbased field emission cathode devices have potential applications in a variety of industrial and medical applications, including cancer treatment. Field emission performance of a single isolated CNT is found to be remarkable, but the situation becomes complex when an array of CNTs is used. At the same time, use of arrays of CNTs is practical and economical. Indeed, such arrays on cathode substrates can be grown easily and their collective dynamics can be utilized in a statistical sense such that the average emission intensity is high enough and the collective dynamics lead to longer emission life. The authors in their previous publications had proposed a novel approach to obtain stabilized field emission current from a stacked CNT array of pointed height distribution. A mesoscopic modeling technique was employed, which took into account electro-mechanical forces in the CNTs, as well as transport of conduction electron coupled with electron phonon induced heat generation from the CNT tips. The reported analysis of pointed arrangements of the array showed that the current density distribution was greatly localized in the middle of the array, the scatter due to electrodynamic force field was minimized, and the temperature transients were much smaller compared to those in an array with random height distribution. In the present paper we develop a method to compute the emission efficiency of the CNT array in terms of the amount of electrons hitting the anode surface using trajectory calculations. Effects of secondary electron emission and parasitic capacitive nonlinearity on the current-voltage signals are accounted. Field emission efficiency of a stacked CNT array with various pointed height distributions are compared to that of arrays with random and uniform height distributions. Effect of this parasitic nonlinearity on the emission switch-on voltage is estimated by model based simulation and Monte Carlo method.
Resumo:
Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.
Resumo:
In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components-like genetic circuits, biochemical cascades, and ion channels, among others-enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode-with almost 20-60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma.
Resumo:
Efficient photon detection in gaseous photomultipliers require maximum photoelectron yield from the photocathode surface and also detection of them. In this work we have investigated the parameters that affect the photoelectron yield from the photocathode surface and methods to improve them thus ensuring high detection efficiency of the gaseous photomultiplier. The parameters studied are the electric field at the photocathode surface, surface properties of photocathode and pressure of gas mixture inside the gaseous photomultiplier. It was observed that optimized electric field at the photocathode ensures high detection efficiency. Lower pressure of filled gas increases the photoelectron yield from the photocathode surface but reduces the focusing probability of electrons inside the electron multiplier. Also evacuation for longer duration before gas filling increases the photoelectron yield.
Resumo:
The rather low scattering or extinction efficiency of small nanoparticles, metallic and otherwise, is significantly enhanced when they are adsorbed on a larger core particle. But the photoabsorption by particles with varying surface area fractions on a larger core particle is found to be limited by saturation. It is found that the core-shell particle can have a lower absorption efficiency than a dielectric core with its surface partially nucleated with absorbing particles-an ``incomplete nanoshell'' particle. We have both numerically and experimentally studied the optical efficiencies of titania (TiO2) nucleated in various degrees on silica (SiO2) nanospheres. We show that optimal surface nucleation over cores of appropriate sizes and optical properties will have a direct impact on the applications exploiting the absorption and scattering properties of such composite particles.