940 resultados para effective field theory
Resumo:
In analogy with the Liouville case we study the sl3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra.
Resumo:
We consider a scalar field theory on AdS in both minimally and non-minimally coupled cases. We show that there exist constraints which arise in the quantization of the scalar field theory on AdS which cannot be reproduced through the usual AdS/CFT prescription. We argue that the usual energy, defined through the stress-energy tensor, is not the natural one to be considered in the context of the AdS/CFT correspondence. We analyze a new definition of the energy which makes use of the Noether current corresponding to time displacements in global coordinates. We compute the new energy for Dirichlet, Neumann and mixed boundary conditions on the scalar field and for both the minimally and non-minimally coupled cases. Then, we perform the quantization of the scalar field theory on AdS showing that, for 'regular' and 'irregular' modes, the new energy is conserved, positive and finite. We show that the quantization gives rise, in a natural way, to a generalized AdS/CFT prescription which maps to the boundary all the information contained in the bulk. In particular, we show that the divergent local terms of the on-shell action contain information about the Legendre transformed generating functional, and that the new constraints for which the irregular modes propagate in the bulk are the same constraints for which such divergent local terms cancel out. In this situation, the addition of counterterms is not required. We also show that there exist particular cases for which the unitarity bound is reached, and the conformai dimension becomes independent of the effective mass. This phenomenon has no bulk counterpart.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Modelos com interações quárticas fermiônicas tem sido estudadas para clarificar aspectos conceituais e possíveis aplicações em teoria quântica de campos. Neste trabalho apresentamos a estrutura do grupo de renormalização no modelo de Nambu-Jona-Lasinio até a ordem de 1-loop. O modelo é não renormalizável perturbativamente, no sentido usual de contagem de potência, mas é tratado como uma teoria efetiva, válida numa escala de energia onde p << ^, sendo p o momento externo do loop e ^ um parâmetro de escala de massa que caracteriza o acoplamento do vértice não renormalizável. Esclarecemos a estrutura tensorial dos vértices de interação e calculamos as funções do grupo de renormalização. A análise dos pontos fixos da teoria também é apresentada e discutida usando o formalismo de redução das constantes de acoplamento proposto por Zimmermann. Encontramos a baixas eneergias a origem como ponto fixo infravermelho estável e um ponto fixo não trivial ultravioleta estável, indicando a consistência perturbativa se o momento é pequeno.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
The possibility of generalizing gravity in 2+1 dimensions to include higher-derivative terms, thereby allowing for a dynamical theory, opens up a variety of new interesting questions. This is in great contrast with pure Einstein gravity which is a generally covariant theory that has no degrees of freedom - a peculiarity that, in a sense, renders it a little insipid and odorless. The research on gravity of particles moving in a plane, that is, living in flatland, within the context of higher-derivative gravity, leads to novel and interesting effects. For instance, the generation of gravity, antigravity, and gravitational shielding by the interaction of massive scalar bosons via a graviton exchange. In addition, the gravitational deffection angle of a photon, unlike that of Einstein gravity, is dependent of the impact parameter. On the other hand, the great drawback to using linearized general relativity for describing a gravitating string is that this description leads to some unphysical results such as: (i) lack of a gravity force in the nonrelativistic limit; (ii) gravitational deffection independent of the impact parameter. Interesting enough, the effective cure for these pathologies is the replacement of linearized gravity by linearized higher-derivative gravity. We address these issues here
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.