920 resultados para dorsal hippocampus
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p<0.01) and the total Nedd4-2 protein to 44% ± 0.13% of its basal level (p<0.01, n=4 animals in each group, mean ± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
Bacterial meningitis (BM) frequently causes persisting neurofunctional sequelae. Autopsy studies in patients dying from BM show characteristic apoptotic brain injury to the stem cell niche in the subgranular zone of the hippocampal dentate gyrus (DG), and this form of brain damage is associated with learning and memory deficits in experimental BM. With an eye to potential regenerative therapies, the survival, migration, and differentiation of neuronal precursor cells (NPCs) were evaluated after engraftment into the injured hippocampus in vitro and in vivo in an infant rat model of pneumococcal meningitis. Green fluorescent protein (GFP)-expressing NPCs were grafted into the DG of organotypic hippocampal slice cultures injured by challenge with live Streptococcus pneumoniae. Seven days after engraftment, NPCs had migrated from the site of injection into the injured granular layer of the DG and electro-functionally integrated into the hippocampal network. In vivo, GFP-expressing NPCs migrated within 1 week from the injection site in the hilus region to the injured granular layer of the hippocampal DG and showed neuronal differentiation at 2 and 4 weeks after transplantation. Hippocampal injury induced by BM guides grafted NPCs to the area of brain damage and provides a microenvironment for neuronal differentiation and functional integration.
Resumo:
BACKGROUND: Pneumococcal meningitis is associated with high mortality (approximately 30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown.We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i) a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI) and (ii) the self-organizing map (SOM), a clustering technique based on covariance in gene expression kinetics. RESULTS: Among 598 genes differentially regulated (change factor > or = 1.5; p < or = 0.05), 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. CONCLUSION: Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential targets for therapy.
Resumo:
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.
Resumo:
Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders. We report the clinical course after selective dorsal rhizotomy in 2 patients with progressive spasticity. Leg spasticity was effectively and persistently reduced in both patients, facilitating care and improving sitting comfort. However, spasticity of the arms and other motor disturbances, such as spontaneous extension spasms and the ataxia, increased gradually in time. Selective dorsal rhizotomy leads to a disappearance of leg spasticity in patients with a neurodegenerative disease. Other motor signs are not influenced and may increase due to the progressive nature of the underlying disease.
Resumo:
This study investigates the results of a technique using an extensor carpi radialis longus (ECRL) tenodesis for symptomatic scapholunate instability. Symptomatic scapholunate instability has been corrected so far either by limited wrist fusion or by various techniques of soft tissue repair. Limited wrist fusion greatly reduces wrist motion and increases the probability of osteoarthritis in the remaining mobile wrist segments. On the other hand, most types of soft tissue repair are technically difficult to perform and have disappointing results due to the inherent laxity. The presented dynamic approach was used in 20 wrists of 19 patients with static scapholunate instability. Preoperative evaluation included in all patients clinical examination, radiologic evaluation, and arthroscopy for establishing the diagnosis of static scapholunate instability. The technique involves the fixation of the ECRL tendon on the dorsal aspect of the scaphoid by means of a cancellous screw and a special washer. Dynamic ECRL tenodesis of the scaphoid is a safe and simple procedure that enhances the extension forces on the scaphoid in all wrist positions. The results of this preliminary report in 20 wrists showed dynamic ECRL tenodesis to be an effective treatment option for treating symptomatic static scapholunate instability.
Resumo:
The adenosine A2a receptors (A2aR) play an important role in the purinergic mediated neuromodulation. The presence of A2aR in the brain is well established. In contrast, little is known about their expression in the periphery. The purpose of this study was to investigate the expression of A2aR gene in the autonomic (otic, sphenopalatine, ciliary, cervical superior ganglia and carotid body) and in the dorsal root ganglia of normal rat. Hybridization histochemistry with S35-labelled radioactive oligonucleotide probes was used. An expression of A2aR gene was found in the large neuronal cells of the rat dorsal root ganglia. The satellite cells showed no expression of A2aR gene. In the superior cervical ganglion, isolated ganglion cells expressed A2aR. In the carotid body clusters of cells with a strong A2aR gene expression were found. In contrast, the ciliary and otic ganglia did not expressed A2aR gene, and only few small sized A2aR expressing cells were demonstrated in the sphenopalatine ganglion. The discrete distribution of A2aR gene expression in the peripheral nervous system speaks for a role of this receptor in the purinergic modulation of sensory information as well as in the sympathetic nervous system.
Activity pattern dependent LTP in neocortex and hippocampus of GluA1 (GluR-A) subunit deficient mice
Resumo:
BACKGROUND Often ignored, hands are one of the most telltale signs of aging. This prospective study was initiated to evaluate the effect of subcutaneous hyaluronic acid (HA) injections in aging hands, with special attention to complications and long-term outcomes. METHODS Between January 2010 and December 2010, a total of 38 patients with skin phototypes II-IV and between 58 and 76 years old were treated with HA injection for aging hands. The quantity of injection never exceeded 1.0-1.5 ml HA per hand. A clinical follow-up was performed at 2 weeks, 4 weeks, 3 months, and 6 months after injection. Complications were reviewed for the whole series. At the first follow-up, 2 weeks after the procedure, ultrasound was carried out to determine if additional filling material was required. At each follow-up, patients were asked to fill out a satisfaction questionnaire. RESULTS Nine patients developed slight ecchymosis that disappeared after 1 week. No other complications were seen in the series. Pain during the injection and discomfort after the procedure were minimal. At the 2-week follow-up, after ultrasound control, nine patients received a complementary injection. At each follow-up, overall patient satisfaction was high and was validated by clearance of rhytids, veins, bony prominences, and dermal and subcutaneous atrophy. CONCLUSION Skin revitalization with injectable HA can improve the clinical appearance of the back of the hands. However, this therapy requires knowledge of the possible complications and their remediation as well as knowledge and respect of injected doses. Moreover, despite excellent results at each follow-up, the results of our series are not as good after 6 months, and a longer follow-up would be needed to determine if this procedure provides long-lasting benefit. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Resumo:
Relational inference denotes the capacity to encode, flexibly retrieve, and integrate multiple memories to combine past experiences to update knowledge and improve decision-making in new situations. Although relational inference is thought to depend on the hippocampus and consciousness, we now show in young, healthy men that it may occur outside consciousness but still recruits the hippocampus. In temporally distinct and unique subliminal episodes, we presented word pairs that either overlapped (“winter–red”, “red–computer”) or not. Effects of unconscious relational inference emerged in reaction times recorded during unconscious encoding and in the outcome of decisions made 1 min later at test, when participants judged the semantic relatedness of two supraliminal words. These words were either episodically related through a common word (“winter–computer” related through “red”) or unrelated. Hippocampal activity increased during the unconscious encoding of overlapping versus nonoverlapping word pairs and during the unconscious retrieval of episodically related versus unrelated words. Furthermore, hippocampal activity during unconscious encoding predicted the outcome of decisions made at test. Hence, unconscious inference may influence decision-making in new situations.
Resumo:
AIM Information regarding the selection procedure for selective dorsal rhizotomy (SDR) in children with spastic cerebral palsy (CP) is scarce. Therefore, the aim of this study was to summarize the selection criteria for SDR in children with spastic CP. METHOD A systematic review was carried out using the following databases: MEDLINE, CINAHL, EMBASE, PEDro, and the Cochrane Library. Additional studies were identified in the reference lists. Search terms included 'selective dorsal rhizotomy', 'functional posterior rhizotomy', 'selective posterior rhizotomy', and 'cerebral palsy'. Studies were selected if they studied mainly children (<18y of age) with spastic CP, if they had an intervention of SDR, if they had a detailed description of the selection criteria, and if they were in English. The levels of evidence, conduct of studies, and selection criteria for SDR were scored. RESULTS Fifty-two studies were included. Selection criteria were reported in 16 International Classification of Functioning, Disability and Health model domains including 'body structure and function' (details concerning spasticity [94%], other movement abnormalities [62%], and strength [54%]), 'activity' (gross motor function [27%]), and 'personal and environmental factors' (age [44%], diagnosis [50%], motivation [31%], previous surgery [21%], and follow-up therapy [31%]). Most selection criteria were not based on standardized measurements. INTERPRETATION Selection criteria for SDR vary considerably. Future studies should describe clearly the selection procedure. International meetings of experts should develop more uniform consensus guidelines, which could form the basis for selecting candidates for SDR.
Resumo:
The gerbil model of ischemia was used to determine the effect of carotid occlusion on energy metabolites in cellular layers of discrete regions of the hippocampus and dentate gyrus. Levels of glucose, glycogen, ATP and phosphocreatine (PCr) were unchanged after 1 minute of ischemia. However, 3 minutes of ischemia produced a dramatic decrease in net levels of all metabolites. No additional decrease was observed after 15 minutes of ischemia. Re-establishment of the blood flow for 5 minutes after a 15 minute ischemic episode returned all metabolites to pre-ischemia levels. Concentrations of glucose and glycogen were elevated in sham-operated animals as a function of the pentobarbital anesthetic employed. In other studies, elevated GABA levels (produced by inhibiting GABA-transaminase with (gamma)-vinyl-GABA (GVG)) were found to decrease the rate of utilization of the high-energy phosphate metabolites ATP and PCr in the mouse cortex. In addition, glucose and glycogen levels were increased. Thus, tonic inhibition by GABA produced decreased cellular activity. Additional experiments demonstrated the attenuation of ischemia-induced metabolite depletion in cellular layers of regions of the hippocampus, dentate gyrus and cortex after GVG administration. Under ether, 1 minute of bilateral carotid occlusion produced a dramatic decrease in metabolite levels. After GVG treatment, the decrease was blocked completely for glucose, glycogen and ATP, and partially for PCr. Therefore, GABA-transaminase inhibition produced increased levels of GABA which subsequently decreased cellular activity. The protection against ischemia may have been due to (a)decreased metabolic rate; the available energy stores were utilized at a slower rate, and (b)increased levels of energy substrates; additional supplies available to maintain viability. These data suggest that the functional state of neural tissue can determine the response to metabolic stress. ^
Resumo:
Reelin is an extracellular matrix glycoprotein expressed in different nerve cell populations in the developing, early postnatal and adult central nervous system. During histogenesis of the neocortex and hippocampus, reelin is present in Cajal-Retzius cells and other early neurons and contributes to correct layering of these regions. During early postnatal life, pioneer neurons disappear and reelin expression establishes in a subpopulation of cortical and hippocampal GABAergic interneurons, where it is maintained throughout adult life. We studied the developmental distribution pattern of reelin in dissociated cultures obtained from the early postnatal hippocampus to verify whether or not such a maturation phenomenon is maintained in vitro. Reelin is expressed both in Cajal-Retzius cells and multipolar and pyramidal neurons in younger cultures. The density of reelin-positive Cajal-Retzius cells dropped drastically by about 84% in 4-week-old cultures. Multipolar and pyramidal neurons containing reelin represented 12% of the total cell population in younger cultures and decreased by about 25% after 3 to 4 weeks of cultivation. Their density was significantly lower in cultures of the same age treated with glutamate receptor antagonists. These reelin-positive multipolar and pyramidal neurons were heterogeneous, including a larger amount of non-GABAergic, and 30-40% of GABAergic neurons. Cells double labeled for reelin and the GABA synthesizing enzyme glutamic acid decarboxylase represented about 4% of the total neuron population in culture and their density remained constant with age. It is thus possible that the decrease in the total reelin population may selectively be of importance to the larger non-GABAergic fraction of reelin cells. This study shows that reelin-expressing neurons are maintained in dissociated cultures of the neonatal hippocampus and their distribution and age-dependent changes in density resemble those of the early postnatal hippocampus in vivo.
Resumo:
Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.