946 resultados para dominant symbols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The KIT receptor protein-tyrosine kinase plays an important role during embryonic development. Activation of KIT is crucial for the development of various cell lineages such as melanoblasts, stem cells of the haematopoietic system, spermatogonia and intestinal cells of Cajal. In mice, many mutations in the Kit gene cause pigmentation disorders accompanied by pleiotropic effects on blood cells and male fertility. Previous work has demonstrated that dominant white Franches-Montagnes horses carry one copy of the KIT gene with the p.Y717X mutation. The targeted breeding of white horses would be ethically questionable if white horses were known to suffer from anaemia or leukopenia. The present study demonstrates that no statistically significant differences in peripheral blood parameters are detectable between dominant white and solid-coloured Franches-Montagnes horses. The data indicate that KIT mutations may have different effects in mice, pigs, and horses. The KIT p.Y717X mutation does not have a major negative effect on the haematopoietic system of dominant white horses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background. In 2011, Alabama, neither a border state nor hold a significantly large Hispanic population, passed the most restrictive state immigration law, The Beason-Hammon Alabama Taxpayer and Citizen Protection Act, HB 56. This omnibus law was far-reaching in its restrictions, including, but not limited to, identification, public services, employment, housing, and law enforcement. Objectives. This research explores the dominant tropes present in the narrative surrounding the anti-immigration legislative activity in Alabama that created fertile ground for the passage of such a punitive immigration law. Methods. Newspaper articles from 2007 to 2011 in Alabama¿s Birmingham News and Press-Register, the two most circulated newspapers in the state, were attained from NewsLibrary.com, an online database of 5,311 newspapers and other news sources. Results. Seven dominant tropes were identified in the articles that pushed for anti-immigration policies. These tropes claimed (1) the US-Mexico border is not secure, (2) the federal government has failed to enact comprehensive immigration reform, (3) immigrants steal jobs, hurt the economy, and (4) burden public services, (5) immigrants are criminals and terrorists, (6) they refuse to assimilate and learn English, and (7) there has been a dramatic percent change in the Hispanic and illegal populations. These tropes cumulatively worked together to create anti-immigration sentiment that pushed for the passage of HB 56.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Autosomal-dominant isolated GH deficiency (IGHD) is a rare disorder that is commonly believed to be due to heterozygous mutations in the GH-1 gene (GH-1). These mutations cause the production of a protein that affects the release of the product of the normal allele. Rarely, heterozygous mutations in the gene encoding for HESX-1 gene (HESX-1) may cause autosomal-dominant IGHD, with penetrance that has been shown to be variable in both humans and mice. SUBJECTS AND METHODS: We have sequenced the whole GH-1 in the index cases of 30 families with autosomal-dominant IGHD. In all the families other possible causes of GH deficiency and other pituitary hormones deficits were excluded. We here describe the clinical, biochemical and radiological picture of the families without GH-1 mutations. In these families, we also sequenced the HESX-1. RESULTS: The index cases of the five families with autosomal-dominant IGHD had normal GH-1, including the intronic sequences. They had no HESX-1 mutations. CONCLUSION: This study shows that GH-1 mutations are absent in 5/30 (16.6%) of the families with autosomal-dominant IGHD and raises the possibility that mutations in other gene(s) may be involved in IGHD with this mode of transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT AND OBJECTIVE: Alteration of exon splice enhancers (ESE) may cause autosomal dominant GH deficiency (IGHD II). Disruption analysis of a (GAA) (n) ESE motif within exon 3 by introducing single-base mutations has shown that single nucleotide mutations within ESE1 affect pre-mRNA splicing. DESIGN, SETTING, AND PATIENTS: Confirming the laboratory-derived data, a heterozygous splice enhancer mutation in exon 3 (exon 3 + 2 A-->C) coding for GH-E32A mutation of the GH-1 gene was found in two independent pedigrees, causing familial IGHD II. Because different ESE mutations have a variable impact on splicing of exon 3 of GH and therefore on the expression of the 17.5-kDa GH mutant form, the GH-E32A was studied at the cellular level. INTERVENTIONS AND RESULTS: The splicing of GH-E32A, assessed at the protein level, produced significantly increased amounts of 17.5-kDa GH isoform (55% of total GH protein) when compared with the wt-GH. AtT-20 cells coexpressing both wt-GH and GH-E32A presented a significant reduction in cell proliferation as well as GH production after forskolin stimulation when compared with the cells expressing wt-GH. These results were complemented with confocal microscopy analysis, which revealed a significant reduction of the GH-E32A-derived isoform colocalized with secretory granules, compared with wt-GH. CONCLUSION: GH-E32A mutation found within ESE1 weakens recognition of exon 3 directly, and therefore, an increased production of the exon 3-skipped 17.5-kDa GH isoform in relation to the 22-kDa, wt-GH isoform was found. The GH-E32A mutant altered stimulated GH production as well as cell proliferation, causing IGHD II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Data on the GH-induced catch-up growth of severely GH-deficient children affected by monogenetic defects are missing. PATIENTS: Catch-up growth of 21 prepubertal children (6 females, 15 males) affected with IGHD type II was analyzed in a retrospective chart review. At start of therapy, mean age was 6.2 years (range, 1.6-15.0), mean height SDS was -4.7 (-7.6 to -2.2), mean IGF-I SDS was -6.2 (-10.1 to -2.2). GH was substituted using a mean dose of 30.5microg/kg*d. RESULTS: Catch-up growth was characterized by a mean height gain of +0.92, +0.82, and +0.61 SDS after 1, 2, and 3 years of GH therapy, respectively. Mean height velocities were 10.7, 9.2 and 7.7cm/year during the first three years. Mean duration of complete catch-up growth was 6 years (3-9). Mean height SDS reached was -0.97 (-2.3 to +1.1), which was within the range of the estimated target height of -0.60 SDS (-1.20 to -0.15). The younger and shorter the children were at start of therapy the better they grew during the first year independent of the dose. Mean bone age was delayed at start by 2.1 years and progressed by 2.5 years during the first two years of therapy. Incomplete catch-up growth was caused by late initiation or irregular administration of GH in four cases. CONCLUSIONS: Our data suggest that GH-treated children with severe IGHD show a sustained catch-up growth over 6 years (mean) and reach their target height range. This response to GH is considered to be characteristic for young children with severe growth retardation due to IGHD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of incidentally discovered lesions within the pituitary (pituitary incidentalomas) is about 10%. The most common form of sellar mass are clinically nonfunctioning adenomas (less than 10 mm); functioning adenomas, however, are rare. Incidentally discovered pituitary microadenomas causing growth hormone hypersecretion are uncommon. In addition, the association of autosomal dominant polycystic kidney disease with acromegaly is exceptional and has not yet been reported to our knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling and analyzing new families with inherited blood disorders are major steps contributing to the identification of gene(s) responsible for normal and pathologic hematopoiesis. Familial occurrences of hematological disorders alone, or as part of a syndromic disease, have been reported, and for some the underlying genetic mutation has been identified. Here we describe a new autosomal dominant inherited phenotype of thrombocytopenia and red cell macrocytosis in a four-generation pedigree. Interestingly, in the youngest generation, a 2-year-old boy presenting with these familial features has developed acute lymphoblastic leukemia characterized by a t(12;21) translocation. Tri-lineage involvement of platelets, red cells and white cells may suggest a genetic defect in an early multiliear progenitor or a stem cell. Functional assays in EBV-transformed cell lines revealed a defect in cell proliferation and tubulin dynamics. Two candidate genes, RUNX1 and FOG1, were sequenced but no pathogenic mutation was found. Identification of the underlying genetic defect(s) in this family may help in understanding the complex process of hematopoiesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Remodelling of matrix and tubular basement membranes (TBM) is a characteristic of polycystic kidney disease. We hypothesized that matrix and TBM degradation by metalloproteinases (MMPs) could promote cyst formation. We therefore investigated the renal expression of MMPs in the Han:SPRD rat model of autosomal dominant polycystic kidney disease (ADPKD) and examined the effect of sirolimus treatment on MMPs. METHODS: 5-week-old male heterozygous (Cy/+) and wild-type normal (+/+) rats were treated with sirolimus (2 mg/kg/day) through drinking water for 3 months. RESULTS: The mRNA and protein levels of MMP-2 and MMP-14 were markedly increased in the kidneys of heterozygous Cy/+ animals compared to wild-type +/+ as shown by RT-PCR and Western blot analyses for MMP-2 and MMP-14, and by zymography for MMP-2. Strong MMP-2 expression was detected by immunoperoxidase staining in cystic epithelial cells that also displayed an altered, thickened TBM. Tissue inhibitor of metalloproteinases-2 (TIMP-2) expression was not changed in Cy/+ kidneys. Sirolimus treatment leads to decreased protein expression of MMP-2 and MMP-14 in Cy/+, whereas MMP-2 and MMP-14 mRNA levels and TIMP-2 protein levels were not affected by sirolimus. CONCLUSION: In summary, in kidneys of the Han:SPRD rat model of ADPKD, there is a marked upregulation of MMP-2 and MMP-14. Sirolimus treatment was associated with a marked improvement of MMP-2 and MMP-14 overexpression, and this correlated also with less matrix and TBM alterations and milder cystic disease.