872 resultados para discrete wavelet transform
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A análise de ocorrências no sistema de energia elétrica é de fundamento mportância para uma operação segura, e para manter a qualidade da energia elétrica lornecida aos consumidores. As concessionárias do setor de energia elétrica usam equipamentos, chamados registradores de perturbação (RP's), para monitora diagnosticar problemas nos sistemas elétrico e de proteção. As formas de onda normalmente analisadas nos centros de operação das concessionárias, são aquelas geradas por eventos que quase sempre causam a aocrtul je linhas devido a operação dos relés comandados pelos dispositivos de proteção .Contudo, uma grande quantidade de registros armazenados que podem conte informações importantes sobre o comportamento e desempenho do sistema elétricl jeixa de ser analisada. O objetivo desse trabalho é usar os dados disponíveis nos centros de ontrole, operação das concessionárias de energia elétrica obtidos pelos RP's, para classificar e quantificar de forma automática sinais que caracterizem problemas de qualidade da energia, quanto a variações de tensão de curta duração: afundamentos, elevações e interrupções. O método proposto usa a transformada wavelet para obter um vetor característico para as tensões das fases A, B e C, e uma rede neural probabilística para classificação. Os sinais classificados como apresentando variações de curta duração são quantilicados quanto a duração e amplitude, usando-se as propriedades da análise nultiresolução da decomposição do sinal. Esses parâmetros, então, irão formar uma Jase de dados onde procedimentos de análise estatística podem ser usados para gerar relatórios com as características da qualidade da energia. Os resultados obtidos com a metodologia proposta para um sistema real são também apresentados.
Resumo:
Apresenta-se nesta dissertação a proposta de um algoritmo supervisionado de classificação de imagens de sensoreamento remoto, composto de três etapas: remoção ou suavização de nuvens, segmentação e classificação.O método de remoção de nuvens usa filtragem homomórfica para tratar as obstruções causadas pela presença de nuvens suaves e o método Inpainting para remover ou suavizar a preseça de sombras e nuvens densas. Para as etapas de segmentação e classificação é proposto um método baseado na energia AC dos coeficientes da Transformada Cosseno Discreta (DCT). O modo de classificação adotado é do tipo supervisionado. Para avaliar o algioritmo foi usado um banco de 14 imagens captadas por vários sensores, das quais 12 possuem algum tipo de obstrução. Para avaliar a etapa de remoção ou suavização de nuvens e sombras são usados a razão sinal-ruído de pico (PSNR) e o coeficiente Kappa. Nessa fase, vários filtros passa-altas foram comparados para a escolha do mais eficiente. A segmentação das imagens é avaliada pelo método da coincidência entre bordas (EBC) e a classificação é avaliada pela medida da entropia relativa e do erro médio quadrático (MSE). Tão importante quanto as métricas, as imagens resultantes são apresentadas de forma a permitir a avaliação subjetiva por comparação visual. Os resultados mostram a eficiência do algoritmo proposto, principalmente quando comparado ao software Spring, distribuído pelo Instituto Nacional de Pesquisas Espaciais (INPE).
Resumo:
Muitos laboratórios de eletrofisiologia visual não possuem seus próprios valores de normalidade para o eletrorretinograma de campo total. Isto prejudica a confiabilidade dos diagnósticos de diversas doenças que afetam as vias visuais. Desta forma, o objetivo deste trabalho foi estabelecer os valores normativos para o teste Eletrorretinograma de Campo Total para o Laboratório de Neurologia Tropical (LNT) da Universidade Federal do Pará (UFPA). Realizaram o eletrorretinograma 68 indivíduos saudáveis e sem queixas visuais divididos em três grupos de acordo com a faixa etária: 36 indivíduos pertenceram ao grupo 1 (entre 17 e 30 anos), 21 indivíduos ao grupo 2 (entre 31 e 45 anos) e 11 indivíduos ao grupo 3 (entre 46 e 60 anos). O protocolo de realização do teste seguiu as recomendações da ISCEV, com a utilização de seis tipos de estimulação. Quatro após adaptação escotópica e estimulação com intensidades de: 0,01 cd.s/m2 (resposta de bastonetes), 3,0 cd.s/m2 (resposta mista de cones e bastonetes e potenciais oscilatórios) e 10,0 cd.s/m2 (resposta mista adicional). Dois após adaptação fotópica em fundo de 30 cd/m2: 3,0 cd.s/m2 (resposta de cones e Flicker 30Hz). Para a análise dos resultados foram calculados os valores de amplitude e tempo implícito das ondas a e b obtidas em resposta a cada um dos seis tipos de estimulação utilizados. Estes valores foram descritos estatisticamente através da mediana, intervalos de confiança, 1º e 3º quartis, coeficiente de variação, média, desvio padrão e valores mínimos e máximos. Os grupos de maior faixa etária apresentaram menores valores de amplitude e atraso no tempo implícito. A utilização da transformada wavelet permitiu a melhor visualização das ondas sem alteração de amplitude e tempo implícito. Portanto, os valores normativos obtidos podem servir como parâmetros de normalidade confiáveis para auxiliar o diagnóstico de doenças retinianas.
Resumo:
Nesta tese é proposta uma metodologia para identificação automática de topologias de linhas telefônicas compostas de uma ou mais seções de linha, as quais são utilizadas em sistemas de linhas digitais de assinante (DSL, do inglês digital subscriber line). Métodos com esta finalidade são fundamentais para a qualificação da linha com o objetivo de instalação do serviço DSL, em especial na atualização para serviços como o VDSL2 ou para adoção de "vetorização". Com o intuito de ser relevante para as operadoras na qualificação de uma rede inteira, composta de milhões de linhas, é fundamental que, além de precisão, métodos de qualificação tenham baixo custo computacional. Os métodos desenvolvidos são baseados nessa premissa e fazem análise da resposta ao impulso e da resposta à reflectometria no domínio do tempo de uma dada linha. Esses sinais são analisados utilizando-se um método de detecção de bordas, baseado em transformada wavelet, para identificar e extrair características de sinal que contenham informação sobre a topologia da linha. Dependendo das características disponíveis, é utilizado um dos três sistemas especialistas desenvolvidos para interpretação dessas informações e identificação da topologia. Estas metodologias são avaliadas através de um conjunto de teste de linhas reais medidas em laboratório. Seus resultados são comparados com os resultados de dois outros métodos implementados a partir da literatura. Os resultados obtidos mostram que os métodos propostos são eficientes na estimação de informações da topologia da linha e possuem reduzido custo computacional quando comparados às implementações das outras técnicas avaliadas.
Resumo:
Os principais objetivos deste trabalho são propor um algoritmo eficiente e o mais automático possível para estimar o que está coberto por regiões de nuvens e sombras em imagens de satélite; e um índice de confiabilidade, que seja aplicado previamente à imagem, visando medir a viabilidade da estimação das regiões cobertas pelos componentes atmosféricos usando tal algoritmo. A motivação vem dos problemas causados por esses elementos, entre eles: dificultam a identificação de objetos de imagem, prejudicam o monitoramento urbano e ambiental, e desfavorecem etapas cruciais do processamento digital de imagens para extrair informações ao usuário, como segmentação e classificação. Através de uma abordagem híbrida, é proposto um método para decompor regiões usando um filtro passa-baixas não-linear de mediana, a fim de mapear as regiões de estrutura (homogêneas), como vegetação, e de textura (heterogêneas), como áreas urbanas, na imagem. Nessas áreas, foram aplicados os métodos de restauração Inpainting por suavização baseado em Transformada Cosseno Discreta (DCT), e Síntese de Textura baseada em modelos, respectivamente. É importante salientar que as técnicas foram modificadas para serem capazes de trabalhar com imagens de características peculiares que são obtidas por meio de sensores de satélite, como por exemplo, as grandes dimensões e a alta variação espectral. Já o índice de confiabilidade, tem como objetivo analisar a imagem que contém as interferências atmosféricas e daí estimar o quão confiável será a redefinição com base no percentual de cobertura de nuvens sobre as regiões de textura e estrutura. Tal índice é composto pela combinação do resultado de algoritmos supervisionados e não-supervisionados envolvendo 3 métricas: Exatidão Global Média (EGM), Medida De Similaridade Estrutural (SSIM) e Confiança Média Dos Pixels (CM). Finalmente, verificou-se a eficácia destas metodologias através de uma avaliação quantitativa (proporcionada pelo índice) e qualitativa (pelas imagens resultantes do processamento), mostrando ser possível a aplicação das técnicas para solucionar os problemas que motivaram a realização deste trabalho.
Resumo:
Este estudo visa apresentar uma análise atmosférica da variabilidade espacial e temporal da Zona de Convergência Intertropical (ZCIT) nas cidades de Belém, Jakarta e Nairóbi, que estão localizadas sobre os continentes da América do Sul, Ásia e África, respectivamente. Para isso, foram utilizados dados diários de precipitação observada e radiação de onda longa para o período de 1999 a 2008, e aplicadas as técnicas matemáticas e estatísticas, como a média aritmética e a transformada em ondeletas Morlet. Em geral, os resultados indicam que do ponto de vista espacial, a precipitação mensal varia consideravelmente, pois as três cidades estudadas localizam-se em diferentes continentes da faixa tropical. Isto ocorre principalmente, durante os meses de Janeiro a Maio, período de maior atuação da ZCIT no hemisfério sul. As variações atmosféricas observadas, a partir dos escalogramas de fase, - de ondeleta indicam que as escalas interdecadal, anual, interanual e intrassazonal são moduladoras da precipitação. Tais escalas podem ser representadas pelos mecanismos oceano-atmosfera dos fenômenos El Niño Oscilação Sul e da oscilação intrassazonal de Madden e Julian. A contribuição destes fenômenos na distribuição da chuva nessas regiões é evidente durante o período estudado, sendo que Nairóbi, apesar de estar localizada em latitude semelhante à de Belém, apresenta pouca evidência do ciclo anual e forte na escala interdecadal. No caso de Belém e de Jakarta as oscilações de múltiescala de precipitação concentram-se nas escalas dos mecanismos moduladores da chuva associados com o ciclo anual e intrassazonal, durante todo o período.
Resumo:
A modelagem do mCSEM é feita normalmente no domínio da frequência, desde sua formulação teórica até a análise dos resultados, devido às simplificações nas equações de Maxwell, possibilitadas quando trabalhamos em um regime de baixa frequência. No entanto, a abordagem através do domínio do tempo pode em princípio fornecer informação equivalente sobre a geofísica da subsuperfície aos dados no domínio da frequência. Neste trabalho, modelamos o mCSEM no domínio da frequência em modelos unidimensionais, e usamos a transformada discreta de Fourier para obter os dados no domínio do tempo. Simulamos ambientes geológicos marinhos com e sem uma camada resistiva, que representa um reservatório de hidrocarbonetos. Verificamos que os dados no domínio do tempo apresentam diferenças quando calculados para os modelos com e sem hidrocarbonetos em praticamente todas as configurações de modelo. Calculamos os resultados considerando variações na profundidade do mar, na posição dos receptores e na resistividade da camada de hidrocarbonetos. Observamos a influência da airwave, presente mesmo em profundidades oceânicas com mais de 1000m, e apesar de não ser possível uma simples separação dessa influência nos dados, o domínio do tempo nos permitiu fazer uma análise de seus efeitos sobre o levantamento. Como parte da preparação para a modelagem em ambientes 2D e 3D, fazemos também um estudo sobre o ganho de desempenho pelo uso do paralelismo computacional em nossa tarefa.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Abstract Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation.
Resumo:
Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.
Resumo:
Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.